# AP Statistics CED 5.1 Daily Video (Skill 1.A)

Introducing Statistics - Why is My Sample Not Like Yours?

#### What Will We Learn?

Why do different samples produce different statistics when they come from the same population? How can we estimate the truth?

#### Dice

Let the random variable x represent the sum of the rolls of 2 fair dice. We would like to take a random sample of 5 rolls and find the sample mean to determine, on average, how far a player would get in 5 turns during a board game.

5 rolls: 7, 4, 9, 3, 12 with  $\bar{x} =$  5 rolls: 4, 3, 10, 3, 6 with  $\bar{x} =$  5 rolls 8, 2, 11, 9, 12, with  $\bar{x} =$ 

# Sampling Variability

I think we can agree on a few things:

- Rolling 2 dice produces \_\_\_\_\_ sums.
- The dice rolls are \_\_\_\_\_\_.
- We don't know how close our sample mean for 5 rolls is to the \_\_\_\_\_\_
  mean of all possible rolls.

#### A Discrete Random Variable

Let the random variable X represent the sum of the rolls of 2 fair dice. The possible values of X are 2 -12.

Rolling two 1's is called snake eyes.

P(snake eyes) = \_\_\_\_\_ = \_\_\_\_

P(2 snake eyes) = \_\_\_\_ = \_\_\_ P( $\bar{x}$  = 2 when n=5)  $\approx$  \_\_\_\_

|   |   | Die 1 | Roll |
|---|---|-------|------|
| - | _ | _     |      |

|            |   | 1 | 2 | 3 | 4  | 5  | 6  |
|------------|---|---|---|---|----|----|----|
|            | 1 | 2 | 3 | 4 | 5  | 6  | 7  |
| =          | 2 | 3 | 4 | 5 | 6  | 7  | 8  |
| Die 2 Roll | 3 | 4 | 5 | 6 | 7  | 8  | 9  |
| je (       | 4 | 5 | 6 | 7 | 8  | 9  | 10 |
|            | 5 | 6 | 7 | 8 | 9  | 10 | 11 |
|            | 6 | 7 | 8 | 9 | 10 | 11 | 12 |

# Sample Means (Using the diagram above)

We can easily roll 2 dice 5 times and calculate the \_\_\_\_\_\_.

We could determine all possible \_\_\_\_\_ for 5 rolls.

The sample means \_\_\_\_\_\_.

Some sample means are more \_\_\_\_\_ than others.

# Samples from Continuous RVs (random variables)

The weight of adult koalas is about 15 points with a standard deviation of 1.8 pounds. Zoo researchers tracking koala health randomly select a sample of 12 koalas each month and calculate the average weight. Each month they could get a different average weight.

 $\bar{x}$ =17.0 pounds  $\bar{x}$ =16.4 pounds  $\bar{x}$ =15.6 pounds  $\bar{x}$ =13.5 pounds  $\bar{x}$ =12.9 pounds

If we could continue to calculate the means of many samples of the same size from the population of all koalas, we would get a distribution of sample means that would help us draw conclusions. And notice that the sample means \_\_\_\_\_ around the true \_\_\_\_\_ mean of \_\_\_\_.



Name **Sample Proportions**  $\hat{p}$ =0.55 win!  $\hat{p}$ =0.48 lose  $\hat{p}$ =0.52 win! In a close election, a candidate has the support of 51% of  $\hat{p}$ =0.47 lose  $\hat{p}$ =0.49 too close to call the voters. Of course, no one knows this until after the election. Five pollsters each take a random sample of 1,000 voters to determine whether the candidate will win. They find: The sample proportions will \_\_\_\_\_\_. But if we collect \_\_\_\_\_\_ sample proportions with a sample size of \_\_\_\_\_, we start to see a \_\_\_\_\_ pattern of how the results could look. How Do Sample Statistics Behave? Different \_\_\_\_\_ samples of the \_\_\_\_\_ from the \_\_\_\_ produce statistics that \_\_\_\_\_\_. A statistic from a \_\_\_\_\_ random sample is not much different that a \_\_\_\_\_\_ . But, the \_\_\_\_\_ of a statistic has a \_\_\_\_\_ pattern of \_\_\_\_\_ related to the \_\_\_\_ What Should We Take Away? Different \_\_\_\_\_\_ from the \_\_\_\_\_ produce \_\_\_\_\_ statistics. If the \_\_\_\_\_ of a population is known, then the \_\_\_\_\_ many different samples of the from that population is

| Name |
|------|
|------|

# AP Statistics CED 5.2 Daily Video 1 (Skill 3.A)

The Normal Distribution, Revisited

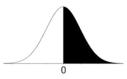
#### What Will We Learn?

How do we calculate the probability that a particular value lies with a given interval of a normal distribution?

How can we determine the interval associated with a given area in a normal distribution?

#### The Standard Normal Distribution

In Video 3 of Lesson 1.10, we learned to use z-scores to calculate the proportion of values within a given region of a normal distribution.



### Normally Distributed Continuous RVs (random variables)

In video 1 of Lesson 4.7, we learned that continuous random variables can take on an infinite number of values in an interval on a number line. The distribution of all values may be approximately normal.

#### **Proportion of Percent**

Looking at the shaded area (above) we could say: The \_\_\_\_\_ of values above 0 = \_\_\_\_. OR The \_\_\_\_ of values above 0 is 50%.

#### Normal Distribution Probabilities

OR, we could say that the \_\_\_\_\_ of randomly selecting a point in the \_\_\_\_ region of the given normal distribution (above) is \_\_\_\_ . Proportion, \_\_\_\_ , they all work and they all start with \_\_\_\_ .

#### Giraffes

Giraffes are clearly the tallest living land animal partly due to their lengthy necks. The lengths of adult giraffe necks can be reasonably approximated by a normal distribution with a mean of 5.9 feet and a standard deviation of 0.3 feet. What is the probability that a randomly selected adult giraffe has a neck greater then 6 feet long?

**First**: define your random variable *X*.

X = \_\_\_\_\_

**Second:** label and shade the graph to the right with the given mean and standard deviation as described in the video.

**Third:** calculate the z-score using the formula: \_\_\_\_\_\_\_. **Finally**: using technology or Table A find: P(X > 6) = \_\_\_\_\_\_

What is important to include in a solution?

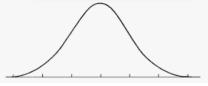
- A **defined** random variable.
- A normal distribution with parameters identified. You can show you used a normal distribution by: drawing a sketch as long as you have scaled \_\_\_\_\_\_\_ standard deviations each way; using the \_\_\_\_\_\_ coupled with the \_\_\_\_\_ statement; OR using the \_\_\_\_\_\_ statement to clearly state that you are using the normal curve. Identify parameters by simply \_\_\_\_\_\_ them; including the \_\_\_\_\_ in the z-score calculation or including \_\_\_\_\_ in the technology statement.
- The **value** of interest. You can show this by the \_\_\_\_\_ in the sketch; by the \_\_\_\_ coupled with the answer or by clearly indicating the \_\_\_\_ and \_\_\_ bounds used in the technology statement. (Make sure you identify the values in the technology statement.)
- The **correct** probability



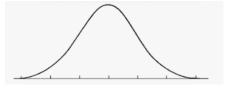
# Giraffes (Be sure to stop the video and try these problems before checking!!)

Giraffes are clearly the tallest living land animal partly due to their lengthy necks. The lengths of adult giraffe necks can be reasonably approximated by a normal distribution with a mean of 5.9 feet and a standard deviation of 0.3 feet. What is the probability that a randomly selected adult giraffe has a neck greater then 6 feet long?

(a) What is the probability that a randomly selected adult giraffe has a neck length less than 5.25 feet?



(b) What is the probability that a randomly selected adult giraffe has a neck length between 5.25 feet and 6.25 feet?



(c) What neck length would place an adult giraffe at the 25<sup>th</sup> percentile of the distribution? (Hint this is an **Inverse Normal** problem)



What Should We Take Away?

The probability a value lies within a defined interval of a \_\_\_\_\_ can be calculated by finding the \_\_\_\_\_ of the defined interval.

The \_\_\_\_\_\_ of an interval associated with a given area in a normal distribution can be determined by using \_\_\_\_\_ or \_\_\_\_.

# AP Statistics CED 5.2 Daily Video 2 (Skill 3.A)

The Normal Distribution, Revisited

### What Will We Learn?

When can a linear combination of two random variable be modeled by a normal distribution? How do we calculate a probability involving such a linear combination?

#### The Race

The Capitol 10K is a fun run in Austin, Texas, complete with live music along the route, some runners in costumes, but also some very competitive runners. The wide variety of fitness levels creates a large standard deviation of tunning times for the close to 20,000 participants.

| Day Time Bear as the se                              |                                                                                                                           |
|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Run Time Parameters                                  | Females Males                                                                                                             |
|                                                      | X = completion time (min) for a Y = completion time (min) for a                                                           |
| The completion times for each gender are             | randomly selected female. randomly selected male. $\mu_X = 81  \sigma_X = 15.7 \qquad \qquad \mu_Y = 70  \sigma_Y = 13.3$ |
| and may be reasonably                                |                                                                                                                           |
| approximated by a distribution. The                  | e time it takes for each runner to complete the                                                                           |
| course is measured by a tracking device and reco     | rded for gender.                                                                                                          |
| What is the probability that a randomly selected f   | emale finishes the race faster than a randomly                                                                            |
| selected male? (Note: the mean time for males to     | o finish the race is; for females it takes                                                                                |
| them longer.)                                        |                                                                                                                           |
|                                                      |                                                                                                                           |
| First, we need to find the parameters of the distri  | bution of in completion times $(X - Y)$ .                                                                                 |
| •                                                    | cture randomly selecting a then randomly                                                                                  |
| selecting a male and then their rac                  | , ,                                                                                                                       |
| possible combinations of females and males out       |                                                                                                                           |
| possible combinations of females and males out       | 51 the 20,000 facets.                                                                                                     |
| To find the of the differences, we would             | d just take the of the                                                                                                    |
|                                                      | males finish the race faster than the females.                                                                            |
| $\mu_{X-Y} - \mu_X - \mu_Y = 61 - 70 = 11$           | nates milari the racenaster than the females.                                                                             |
| To find the standard deviation of the differences    | you cannot the standard deviations!                                                                                       |
| You must first change them to and                    |                                                                                                                           |
| and most most driving a trom to and                  | . anom we amays <u> </u>                                                                                                  |
| Because X and Y are you have                         | $\sigma_{X-Y} = \sqrt{\sigma_X^2 + \sigma_Y^2} = \sqrt{15.7^2 + 13.3^2} = 20.576$                                         |
| Shape of the Distribution of $X - Y$ .               | $\mu_{X-Y} = 11$ $\sigma_{X-Y} = 20.576$                                                                                  |
|                                                      | $\mu_{X-Y} = 11$ $\sigma_{X-Y} = 20.57$                                                                                   |
| Still considering the question: What is the probab   | oility that randomly selected female finishes the race                                                                    |
| faster than a randomly selected male?                |                                                                                                                           |
| We know that shape of the distributions of $X - Y$ i | s The                                                                                                                     |
| distribution of the of two                           |                                                                                                                           |
| modeled with a                                       |                                                                                                                           |
| variable is                                          | ,                                                                                                                         |
|                                                      | <u>—</u> -                                                                                                                |
| Note: In the beginning of this problem, we were      | given that the male and female race time were                                                                             |
| approximately normal. So, we can assume that th      | _                                                                                                                         |
| approximately normal. 30, we can assume that the     | e distribution of the is also                                                                                             |
| •                                                    |                                                                                                                           |



Name

#### No Difference

What is the probability that a randomly selected female finishes the race faster than a randomly selected male?

 $\mu_{X-Y} = 11$   $\sigma_{X-Y} = 20.576$ 

Using the diagram to the right:

If the randomly selected male and female finish with the \_\_\_\_\_ time, the difference would be \_\_\_\_\_.



Understanding the Question

If the female finishes \_\_\_\_\_, then her time would be \_\_\_\_, making the difference (female-male) \_\_\_\_\_. So, what we are looking for here is the probability the difference in race time (female-male) is less than \_\_\_\_\_ or a \_\_\_\_\_.

# Calculating the Probability

What is the probability that a randomly selected female finishes the race faster than a randomly selected male?

First, calculate the z-score:

 $\mu_{X-Y} = 11$   $\sigma_{X-Y} = 20.576$ 

Second, using Table A or technology, find P(X - Y < 0) =Finally, write your answer as a complete sentence.

# Shape of the Distribution of X + Y

The distribution of the \_\_\_\_\_ of two independent random variables can be modeled with a \_\_\_\_\_ distribution if the probability distribution of each random variable is

$$\mu_{X+Y} = \mu_X + \mu_Y \qquad \qquad \sigma_{X+Y} = \sqrt{\sigma_X^2 + \sigma_Y^2}$$

### Another 10K

A more competitive 10K has the mean and standard deviations listed to the right for male and female

**Females** X = completion time (min) for arandomly selected female. randomly selected male.  $\mu_{\rm v} = 63$   $\sigma_{\rm v} = 4$   $\mu_{\rm v} = 54$   $\sigma_{\rm v} = 3.3$  $\mu_X = 63$   $\sigma_X = 4$ 

<u>Males</u> Y = completion time (min) for a  $\mu_Y = 54$   $\sigma_Y = 3.3$ 

finishing time in mintues. Times for males and females are independent. It is reasonable to assume that the distribution of times for each gender is approximately normal.

What is the probability that a randomly selected female will finish the race at least 15 minutes slower that a randomly selectect male? (Pause the video and complete the problem, then check answer!)



#### What Should We Take Away?

A linear combination (including a difference or a sum) of two approximately normal random variables can be modeled by a \_\_\_\_\_\_ The procedures learned to find probabilities using a normal distribution also apply when finding

probabilities involving a linear combination of \_\_\_\_\_\_, approximately random variables.

| Name |  |
|------|--|
|      |  |

# AP Statistics CED 5.2 Daily Video 3 (Skill 3.C)

The Normal Distribution, Revisited

#### What Will We Learn?

How can we decide whether a normal distribution is a good approximation for an unknown distribution?

What characteristics of a normal distribution should we check when assessing normality?

# Adulting

Although a majority of parents disagree, 14% of young adults (18-29) claim their parents are doing too little for them.

What might the results of a random sample of 10 young adults look like on this issue?

Could we use the normal distribution as an approximation for the number of young adults in a random sample of size n = 10 who think their parents are doing too little for them?

# The Sample Count

14% of young adults claim their parents are doing too little for them. Let X = the number of young adults in a random sample of 10 who think their parents do too little for them.

This is a binomial situation. If it is binomial there has got to be \_\_\_\_\_ outcomes. The number of trials if \_\_\_\_\_ at ten. What one young adult says should be \_\_\_\_\_ of what another young adult says. And, the probability a young adult claims their parent is doing too little is 14% for \_\_\_\_\_ trial.

Therefore, this is a \_\_\_\_\_ situation.

#### The Binomial Formula

For instance, *X* could be 3. Therefore,  $P(X = 3) = {10 \choose 3} \cdot 0.14^3 \cdot (1 - 0.14)^7 = 0.115$ 

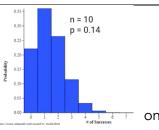
We could then make a graph of \_\_\_\_\_\_ values of X and their probabilities to determine whether a normal distribution is an appropriate model.

# Is Normal Appropriate?

This distribution is \_\_\_\_\_ but not \_\_\_\_\_ or

On the horizontal axis we have \_\_\_\_\_ possible values of \_\_\_\_. And the vertical axis we have the \_\_\_\_\_ for each one.

The distribution is clearly \_\_\_\_\_\_, which makes normal distribution inappropriate as an approximation.



Name Is Normal Appropriate? n = 75Now, if we do that same thing with a samples size of \_\_\_\_\_. p = 0.14 $\mu = 10.5$ This distribution is \_\_\_\_\_ and looks roughly \_\_\_  $\sigma = 3.0$ 0.05 But is it appropriate to use normal distribution to approximate probabilities? Partial Probability Distribution X = the number of young adults in a random sample of 75 who think their parents do too little for them. 8 9 10 11 12 13 14 15 16 17 18 1 Note how this partial probability distribution  $\mu = 10.5$ fit the 68-95-99.7 rule for a normal  $\sigma = 3.0$ 68% distribution.  $3\sigma$ When the sample size is \_\_\_\_\_ enough, distribution is a good approximation to a binomial distribution. Assessing Normality p = 0.14This distribution is \_\_\_\_\_ or When the sample size is \_\_\_\_\_, the normal distribution is \_\_\_\_ good approximation to a binomial distribution.

### What Should We Take Away?

Characteristics to check for an approximately normal distribution:

- 1. Unimodal, roughly symmetric, bell-shaped
- 2. Empirical rule generally applies (68, 95, 99.7)

| Name |  |
|------|--|
|      |  |

# AP Statistics CED 5.3 Daily Video 1 (Skill 3.C)

The Central Limit Theorem

| What Will We Learn?                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| What is a sampling distribution?                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| How can we use simulation to approximate the sampling distribution of a statistic?                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| What does the central limit theorem say?                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Sampling Distribution Definition                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| A sampling distribution of a statistic is the distribution of values for the statistics for                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| of the from a given population.                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| You are interested in the average resting heart rate of teenagers. You use a sample size of  You take a sample of teens. Determine the sample resting heart rate.  And then do it again, and again and again. Until you have possible samples of 28 and their sample resting heart rate. The collection of those sample means is a sampling distribution. That is nearly impossible to do for most populations |  |  |  |  |
| Pico University Applet                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| http://onlinestatbook.com/stat_sim/sampling_dist/                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| Follow along as the video demonstrates this sampling distribution applet.                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| If the population distribution is approximately, it appears the sampling distribution is                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| approximately even with a sample.                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| If the population distribution is skewed and the sample size is small, the sampling distribution is also However, if the sample size is large enough, the sampling distribution is, and appears                                                                                                                                                                                                                |  |  |  |  |
| It appears that no matter what the population looks like, or one single sample, the                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| of sample means will be approximately normal <b>IF</b> the                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| sample size is                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| What Should We Take Away?                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| The sampling distribution of a statistic is the distribution of values for the statistic of possible                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| samples of the from a given population.                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| The sampling distribution of a statistic can be by generating repeated random samples from a population.                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| The central limit theorem state that when the sample size is                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| , a sampling distribution of the of a random variable will be                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| approximately distributed.                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| - 1-1- 1-1- 1-1- 1-1- 1-1- 1-1- 1-1- 1                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |



# AP Statistics CED 5.3 Daily Video 2 (Skill 3.C)

# The Central Limit Theorem

#### What Will We Learn?

What is a randomization distribution?

What can a randomization distribution tell us about the results of an experiment?

### The Experiment

Newborns often sleep more during the day than the night. In a double-blind experiment to increase nighttime sleep for newborns, 16 nursing mothers were randomly assigned to take either melatonin or a placebo.

#### **Experimental Result**

During the night, newborns wake up to be fed and then, hopefully, return to sleep. The total number of hours each newborn slept for the right was recorded.

| <u>Melatonin</u> |      |      | <u>Placebo</u> |     |      |      |      |
|------------------|------|------|----------------|-----|------|------|------|
| 11.1             | 10.4 | 8.8  | 10.4           | 7.2 | 10.8 | 9.3  | 10.6 |
| 10.7             | 13.0 | 11.4 | 12.8           | 9.4 | 8.0  | 10.1 | 9.6  |

 $\bar{x}_{M}$  = 11.07 hours

 $\bar{x}_{P}$  = 9.38 hours

$$\bar{x}_M - \bar{x}_P$$
  
= 11.07 - 9.38  
= 1.69 hours

#### **Randomization Distribution**

To investigate whether the difference in sleep time could reasonably be due to chance, we will \_\_\_\_\_\_ a randomization distribution. A randomization distribution is a collection of statistics generated by \_\_\_\_\_\_ reassigning the response values to the treatment group.

#### Random Reallocation

If you take all of the values out of their treatment group and \_\_\_\_\_ values in the melatonin group the remaining values will be in the placebo group.



# **Calculating Statistics**

Once they are separated, with total disregard for where they really came from, calculate the \_\_\_\_\_\_ of each treatment group and find the \_\_\_\_\_ in those means.



$$\bar{x}_M - \bar{x}_P$$
  
= 10.56 - 9.89  
= 0.67hours

Find the difference in mean sleep time. Here (because our value is positive) it looks like the melatonin group got \_\_\_\_\_\_ sleep on average then the placebo group.

#### **Another Random Reallocation**

Randomly assign another 8 values for the melatonin group. The remaining vales will be in the placebo group.



# Calculate Statistics

Calculate the mean of each treatment group and find the difference in means.

 Melatorin
 Placebo

 10.4
 10.7
 13.0
 11.4
 11.1
 10.4
 8.8
 12.8

 7.2
 8.0
 10.6
 9.6
 9.4
 10.8
 10.1
 9.3

 $\bar{x}_M = 10.11$   $\bar{x}_P = 10.33$   $\bar{x}_M - \bar{x}_P = 10.11 - 10.33$  = -0.22

Here (because the value is negative) it looks like the placebo group got \_\_\_\_\_ sleep on average than the melatonin group.



Name

|                                                                                    | Titaline                                                                  |
|------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Random Assignment Possibilities                                                    |                                                                           |
| If we continue to                                                                  | _ the response values to the treatment groups,                            |
| find the of sample means, and                                                      | the differences, we will create a                                         |
|                                                                                    | [50.11                                                                    |
| This dotplot represents a                                                          | 50 trials                                                                 |
| difference in means. (Note that each point (dot)                                   | -1.5 -1 -0.5 0 0.5 1 Simulated difference in means                        |
| represents the times from eight babies sleeping in th                              | ппре://www.stappert.com/quaretv_mum.ntmi                                  |
| group and eight babies sleeping t                                                  | he group, finding the                                                     |
| of each and them.) Them.                                                           |                                                                           |
| *Note: There are different possibilit                                              | ties for reallocating the treatments!!!                                   |
| Random Assignment Possibilities                                                    | But the actual                                                            |
|                                                                                    | experiment resulted in a difference of 1.69.                              |
| Using this simulated data we could find the                                        | 000 trials                                                                |
| probability that we would get                                                      |                                                                           |
| 1.69 or greater hours of sleep by chance alone.                                    |                                                                           |
|                                                                                    | -2 -1.5 -1 -0.5 0 0.5 1 1.5 2                                             |
| It looks like there are $\frac{12}{1000} = $                                       | Simulated difference in means https://www.stappist.com/quant1v_routh.thml |
| Conclusion                                                                         |                                                                           |
| $\bar{x}_M = $                                                                     |                                                                           |
| $\overline{X}_P = \underline{\hspace{1cm}}$                                        |                                                                           |
| $P(\bar{x}_M - \bar{x}_P \geq \underline{\hspace{1cm}}   \underline{\hspace{1cm}}$ | =                                                                         |
|                                                                                    |                                                                           |
| The probability of the fo                                                          | or the melatonin group being                                              |
| greater than the                                                                   | for the placebo group in a                                                |
| of values to treatment groups i                                                    |                                                                           |
| happened by                                                                        |                                                                           |
| evidence that the melatonin                                                        |                                                                           |
| increases the number of hours that newb                                            | orns sleep.                                                               |
| What Should We Take Away?                                                          | ·                                                                         |
| A distribution for a randomized                                                    | experiment is a collection of statistics generated                        |
| by to respo                                                                        | ·                                                                         |
|                                                                                    | <b>5</b> 1                                                                |
| A randomized distribution can be used to assess the                                | of an observed outcome                                                    |
| happening by                                                                       |                                                                           |
|                                                                                    |                                                                           |

# AP Statistics CED 5.4 Daily Video 1 (Skill 4.B)

Biased and Unbiased Point Estimates

#### What Will We Learn?

What is a point estimate?

How do we determine if an estimator is unbiased?

#### Weimaraner

A breeder has 5 Weimaraner dogs. A sample of 3 dogs will be randomly selected for a study. The ages of the dogs (in years) are: 0 2 5 10

Is the sample mean an unbiased estimator of the mean age of the population?

Population ages: 0 2 5 8 10  $\mu = 5$ Unbiased Estimator.

When estimating a parameter, an estimator is \_\_\_\_\_\_ if,\_\_\_\_\_ if,\_\_\_\_\_, the value of the estimator is \_\_\_\_\_ to the population parameter.

The population is small enough that we can actually investigate all possible samples of size 3.

One Sample Mean Population ages: 0 2 5 8 10  $\mu = 5$ 

One possible sample of three dog ages is: 0, 2, 5  $\bar{x} = 2.3$  A sample statistic is a the corresponding population parameter

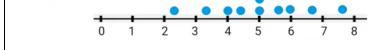
Then continue to find the sample mean for all possible samples of size 3.

# All Possible Sample Means

| Sample   | $\bar{x}$ | Sample   | $\bar{x}$ | Sample   | $\bar{x}$ |
|----------|-----------|----------|-----------|----------|-----------|
| 0, 2, 5  | 2.3       | 0, 5, 10 | 5.0       | 2, 5, 10 | 5.7       |
| 0, 2, 8  | 3.3       | 0, 8, 10 | 6.0       | 2, 8, 10 | 6.7       |
| 0, 2, 10 | 4.0       | 2, 5, 8  | 5.0       | 5, 8, 10 | 7.7       |
| 0, 5, 8  | 4.3       |          |           |          |           |

 $\mu_{\bar{x}} = 5$ 

When estimating a \_\_\_\_\_ parameter, \_\_\_\_\_ exhibits that can be modeled using probability.



A Second Look Population ages: 0 10  $\mu = 5$  $\mu_{\bar{x}} = 5$ 

Let's look at the definition of an unbiased estimator again.

### Unbiased Estimator – Mean

An estimator is unbiased if \_\_\_\_\_\_ is to the . Here, with the mean, it is!

Population ages: 0 2 5 8 10 population One Sample Range point estimate One possible sample of three dog ages: 0, 2, 5 range = 5

Is the sample range an unbiased estimator of the population range?

Continue to find the sample range for all possible samples of size three.

point estimator

|                                                                   |          |          |          |        |                                            |         | Name                                                                       |
|-------------------------------------------------------------------|----------|----------|----------|--------|--------------------------------------------|---------|----------------------------------------------------------------------------|
| All P                                                             | ossible  | Samp     | le Rang  | es:    | Рорг                                       | ulatior | n ages: 0 2 5 8 10 population range = 10                                   |
|                                                                   | Sample   | Range    | Sample   | Range  | Sample                                     | Range   | mean of sample                                                             |
|                                                                   | 0, 2, 5  | 5        | 0, 5, 10 | 10     | 2, 5, 10                                   | 8       | ranges = 7.8                                                               |
|                                                                   | 0, 2, 8  | 8        | 0, 8, 10 | 10     | 2, 8, 10                                   | 8       | 70 is                                                                      |
|                                                                   | 0, 2, 10 | 10       | 2, 5, 8  | 6      | 5, 8, 10                                   | 5       | Notice 7.8 is                                                              |
|                                                                   | 0, 5, 8  | 8        |          |        | _                                          |         | Notice 7.0 is  Not equal to 10!                                            |
|                                                                   |          |          |          |        |                                            |         |                                                                            |
|                                                                   | 0        | 1        | 2 3      | 4      | 5 6                                        | 7       | 8 9 10 11                                                                  |
| side o                                                            |          | pulation | on range | e. The | _                                          |         | lifferent samples of size 3 vary, but they do NOT vary on either the side! |
| An es                                                             | stimato  | r is un  | biased   | if,    |                                            |         | , the value of the is equal to the                                         |
| ,                                                                 |          |          |          |        | Here the value of the                      |         |                                                                            |
|                                                                   |          |          | does     | not e  | qual th                                    | е рор   | ulation parameter. So, range is a                                          |
| estim                                                             | ator of  | the _    |          |        |                                            | rar     | nge.                                                                       |
| What                                                              | Should   | d We     | Take Av  | way?   |                                            |         |                                                                            |
| A sample statistic is aof the corresponding population parameter. |          |          |          |        | of the corresponding population parameter. |         |                                                                            |
| Whe                                                               | n estima | ating a  | ∋        |        |                                            |         | , an estimator exhibits                                                    |
| that o                                                            | can be i | model    | led usin | g pro  | bability.                                  | •       |                                                                            |

An estimator is \_

to the population parameter.

\_\_\_\_\_, the value of the estimator is

# AP Statistics CED 5.5 Daily Video 1 (Skill 3.B)

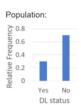
Sampling Distributions for Sample Proportions

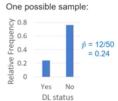
### What Will We Learn?

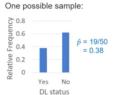
How do we determine the parameters of a sampling distribution of a sample proportion? How do we determine if the shape of a sampling distribution of a sample proportion is approximately normal?

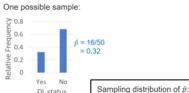
# Sampling From a High School

In a high school with 2000 students, 30% of the students have a driver's license. Suppose we select a random sample of n = 50 students from the high school, ask each student in the sample if he or she has a driver's license, and calculate the sample proportion  $\hat{p}$  with a driver's license.

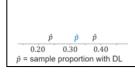








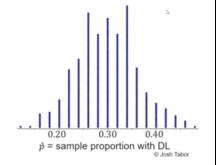
We won't always get the same value when we take a sample, that is called \_\_\_\_\_\_\_. There are lots of possible samples of size 50 that we could take.



Here is a simulated sampling distribution of \_\_\_\_\_ = the sample proportion of students with a driver's license, based on 500 samples of size n = 50. When you think about describing this distribution you should always think about \_\_\_\_ and \_\_\_ and

The distribution of the sample proportion is:

- •
- •



#### Mean and Standard Deviation

Let  $\hat{p}$  be the sample proportion of \_\_\_\_\_ in a random sample of size n selected from a population with proportion of successes p. Then,

$$\mu_{\hat{p}} = p$$

$$\sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}}$$

\*assuming the sample size is less than \_\_\_\_\_ of the population size OR if we sample with replacement from the population. This condition is met in almost all circumstances. Good news! These are on the AP Stat formula sheet!

In our example,  $\hat{p}$  is the \_\_\_\_\_ proportion of students with a driver's license in samples of size n =\_\_\_\_ from a population where \_\_\_\_\_. So that tells us that:

the mean of the  $\hat{p}$  distribution in that context is:  $\mu_{\hat{p}}=p=0.3$  and the standard deviation is:

$$\sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.3(1-0.3)}{50}} = 0.065^*$$

In this case we are taking samples of size \_\_\_\_\_ from a large high school of 2000 student clearly < \_\_\_\_\_ of the population.



| INa                                                            | ame                                     |
|----------------------------------------------------------------|-----------------------------------------|
| Shape                                                          |                                         |
| Let be the sample proportion of success in a random s          | sample of size <i>n</i> selected from a |
| population with a proportion of successes Then, the            |                                         |
| approximately normal when: $np \ge 10$ and $n(1-p) \ge 10$     |                                         |
|                                                                |                                         |
| For our example about students with driver's licenses,         | and :                                   |
|                                                                |                                         |
| np = and                                                       |                                         |
| 44                                                             |                                         |
| $n(1-p) = \underline{\hspace{1cm}}$                            |                                         |
| NA/L at Chard NA/a Talaa Acces 2                               |                                         |
| What Should We Take Away?                                      |                                         |
| How do we determine the parameters of a sampling distribution  | on of a sample proportion?              |
| Moone                                                          |                                         |
| Mean:                                                          |                                         |
| Standard Deviation :                                           |                                         |
| Standard Deviation .                                           |                                         |
| *assuming the sample size is than                              | of the population size.                 |
| <u></u>                                                        |                                         |
| How do we determine if the shape of a sampling distribution of | of a sample proportion is approximately |
| normal?                                                        |                                         |
|                                                                |                                         |
| The sampling distribution of will be approximat                | tely normal when:                       |
|                                                                |                                         |
| and                                                            |                                         |
|                                                                |                                         |

# AP Statistics CED 5.5 Daily Video 2 (Skill 4.B)

Sampling Distributions for Sample Proportions

#### What Will We Learn?

How do we interpret the parameters of a sampling distribution of a sample proportion? How do we calculate and interpret probabilities involving a sampling distribution of a sample proportion?

# Sampling From a High School

In a high school with 2000 students, 30% of the students have a driver's license. Suppose we select a random sample of n = 50 students from the high school, ask each student in the sample if he or she has a driver's license, and calculate the sample proportion  $\hat{p}$  with a driver's license.

Here is what we learned from the 5.5 video 1. The sampling distribution of  $\hat{p}$  is:

- $u_{\hat{p}} = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$
- $\sigma_{\hat{p}} = \underline{\hspace{1cm}} = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$

| pp                                                 |
|----------------------------------------------------|
| $\hat{p} \hat{p} \hat{p} \hat{p}$                  |
| $/\hat{p} \hat{p} \hat{p} \hat{p} \hat{p} \hat{p}$ |
| pr p           |
| pp p p p p p p p p p                               |
| p´ p̂                |
| pp p p p p p p p p p p p p p p                     |
| <i>p̂ p̂ p</i>    |
| 0.20 0.30 0.40                                     |
| $\hat{p}$ = sample proportion with DL              |

Interpreting the Mean

Interpret the value of  $\mu_{\hat{p}} = .30$ 

For all \_\_\_\_\_\_ samples of size \_\_\_\_\_ from this population, the sample proportions of students who have a driver's license will have a \_\_\_\_\_ of \_\_\_\_.

Interpreting the Standard Deviation

Interpret the value  $\sigma_{\hat{p}} = 0.065$ 

For all \_\_\_\_\_ samples of size \_\_\_\_ from this population, the sample proportions of students who have a driver's license \_\_\_\_ by about \_\_\_\_ from the \_\_\_\_ proportion of \_\_\_\_.

\*Knowing how much a \_\_\_\_\_ statistics \_\_\_\_\_ varies from the \_\_\_\_ is one of the most important reasons to study \_\_\_\_\_.

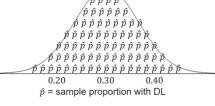
Calculating Probabilities

Would it be unusual to get a sample proportion of  $\hat{p} = 0.12$  or less in a random sample of size n = 50 from this population? (Using the normal curve below to label and shade.)

*Z* = =

Use table A or technology to calculate:

 $P(\hat{p} < 0.12) =$ \_\_\_\_\_



| iname                                                                                                                                                                                            |                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Interpreting Probabilities                                                                                                                                                                       |                    |
| Would it be unusual to get a sample proportion of $\hat{p} = 0.12$ or less in a random sample from this population?                                                                              | e of size $n = 50$ |
| Getting a proportion of or happens in or of all possible samples of from population                                                                                                              |                    |
| *Knowing what values of a statistic count as is one of the most important study                                                                                                                  |                    |
| What Should We Take Away?                                                                                                                                                                        |                    |
| How do we interpret the parameters of a sampling distribution of a sample proportion                                                                                                             | ?                  |
| • In                                                                                                                                                                                             |                    |
| <ul> <li>Reference possible samples from the population, include or</li> </ul>                                                                                                                   |                    |
| How do we calculate and interpret probabilities involving a sampling distribution of a sproportion?                                                                                              | sample             |
| <ul> <li>Use procedures from Topic 5.2 with the of the sampling distribution of (Topic 5.5, Video 1)</li> <li>Interpretations should be and reference samples of from the population.</li> </ul> |                    |



# AP Statistics CED 5.6 Daily Video 1 (Skill 3.B)

Sampling Distributions for Differences in Sample Proportions

### What Will We Learn?

How do we determine the parameters of a sampling distribution of a difference in sample proportions?

How do we determine if the shape of a sampling distribution of a difference in sample proportions is approximately normal?

# Sampling From a High School

In high school A, 30% of the students have a driver's license. In high school B, 22% of the students have a driver's license. Suppose we select a random sample of n=50 students from each high school, ask each student in each sample if he or she has a driver's license, calculate the sample proportion with a driver's license in each sample, and compute the difference in sample proportions  $\hat{p}_{\rm A}$  -  $\hat{p}_{\rm B}$ .

One possible sample from A:  $\hat{p}_A = 18/50 = 0.36$ 

One possible sample from B:  $\hat{p}_{B} = 10/50 = 0.20$ 

$$\hat{p}_{\mathrm{A}}$$
 -  $\hat{p}_{\mathrm{B}}$  = \_\_\_\_\_

One possible sample from A:  $\hat{p}_{A}$  = 13/50 = 0.26

One possible sample from B:  $\hat{p}_{\rm B}$  = 14/50 = 0.28

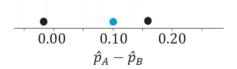
$$\hat{p}_{A}$$
 -  $\hat{p}_{B}$  = \_\_\_\_\_

One possible sample from A:  $\hat{p}_A = 14/50 = 0.28$ 

One possible sample from B:  $\hat{p}_B = 9/50 = 0.18$ 

$$\hat{p}_{\mathrm{A}}$$
 -  $\hat{p}_{\mathrm{B}}$  = \_\_\_\_\_

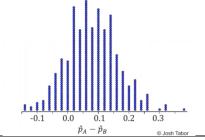
Sampling distribution of  $\hat{p}_A - \hat{p}_B$ :



Here is a simulated sampling distribution of  $\hat{p}_A$  -  $\hat{p}_B$  based on 500 random samples of size n=50 from high school A and 500 random samples of size n=50 from high school B.

The distribution of  $\hat{p}_{A}$  -  $\hat{p}_{B}$  is:

- \_\_\_\_\_
- \_\_\_\_\_
- \_\_\_\_\_



Mean and Standard Deviation

Let \_\_\_\_\_\_ be the sample proportion of successes in a \_\_\_\_\_\_ sample of size, \_\_\_\_\_ selected from population 1 with proportions of successes \_\_\_\_\_ and let \_\_\_\_\_ be the sample proportion of successes in a random sample of size \_\_\_\_\_ selected from population 2 with proportion of successes \_\_\_\_\_  $p_1(1-p_1)$  ,  $p_2(1-p_2)$ 

\_\_\_\_\_. Then,  $\mu_{\widehat{p}_1-\widehat{p}_2}=p_1-p_2$   $^{\sigma_{\widehat{p}}}$ 

$$\mu_{\hat{p}_1 - \hat{p}_2} = p_1 - p_2$$
  $\sigma_{\hat{p}_1 - \hat{p}_2} = \sqrt{\frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}}$ 

Assuming the samples sizes are less than 10% of the population sizes and that the two samples are independent.



| Name |  |      |  |
|------|--|------|--|
|      |  | <br> |  |

#### Mean and Standard Deviation

In high school A,  $\hat{p}_{\rm A}$  = \_\_\_\_\_ and  $n_{\rm A}$  = \_\_\_\_\_. In high school B,  $\hat{p}_{\rm B}$  = \_\_\_\_\_ and  $n_{\rm B}$  = \_\_\_\_\_.

Therefore,

$$\mu_{\hat{p}_{A} - \hat{p}_{B}} = \underline{\hspace{1cm}}$$

$$\sigma_{\hat{p}_{A} - \hat{p}_{B}} = \sqrt{\frac{p_{A}(1-p_{A})}{n_{A}} + \frac{p_{B}(1-p_{B})}{n_{B}}}$$

Assuming the sample sizes are less than \_\_\_\_\_ and the two samples are \_\_\_\_\_.

#### Mean and Standard Deviation

Good news! Both of the formulas above can be found on the AP Statistics formula sheet!!! Take a moment to locate these formulas now!

### Shape

Let  $\hat{p}_1$  be the sample proportion of successes in a random sample of size  $n_1$  selected from population 1 with proportion of successes  $p_{11}$  and let  $\hat{p}_2$  be the sample proportion of successes in a random sample of size  $n_2$  selected from population 2 with proportion of successes  $p_2$ . Then, the sampling distribution of  $\hat{p}_1$  -  $\hat{p}_2$  will be approximately normal when:

For our example about students with driver's licenses from high school A and high school B,

$$n_{\mathrm{A}} = \underline{\hspace{1cm}}; \quad p_{\mathrm{A}} = \underline{\hspace{1cm}}; \quad n_{\mathrm{B}} = \underline{\hspace{1cm}}; \text{ and } \quad p_{\mathrm{B}} = \underline{\hspace{1cm}}$$

 Check conditions:
 ≥ 10;
 ≥ 10

 ≥ 10;
 ≥ 10

Therefore the (sampling) distribution of  $\hat{p}_{\rm A}$  -  $\hat{p}_{\rm B}$  is \_\_\_\_\_\_ normal in this context.

### What Should We Take Away?

How do we determine the parameters of a sampling distribution of a difference of sample proportions? MEAN:  $\mu_{\hat{p}_1-\hat{p}_2} = p_1 - p_2 \quad \text{SD:} \quad \sigma_{\hat{p}_1-\hat{p}_2} = \sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}$ 

Assuming the sample sizes are less than 10% of the population sizes and samples are independent.

How do we determine if the shape of a sampling distribution of a difference in sample proportions is approximately normal?

The sampling distribution of  $\hat{p}_1 - \hat{p}_2$  will be approximately normal when:

$$n_1p_1 \ge 10$$
,  $n_1(1-p_1) \ge 10$ ,  $n_2p_2 \ge 10$ , and  $n_2(1-p_2) \ge 10$ 

# AP Statistics CED 5.6 Daily Video 2 (Skill 4.B)

Sampling Distributions for Differences in Sample Proportions

#### What Will We Learn?

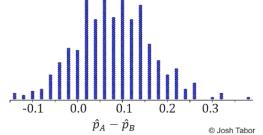
How do we interpret the parameters of a sampling distribution of a difference in sample proportions? How do we calculate and interpret probabilities involving a sampling distribution of a difference in sample proportions?

# Sampling From a High School

In high school A, 30% of the students have a driver's license. In high school B, 22% of the students have a driver's license. Suppose we select a random sample of n = 50 students from each high school, ask each student in each sample if he or she has a driver's license, calculate the sample proportion with a driver's license in each sample, and compute the difference in sample proportions  $\hat{p}_A - \hat{p}_B$ .

The distribution of  $\hat{p}_A - \hat{p}_B$  is

- Approximately normal
- $\mu_{\hat{p}_A \hat{p}_B} = 0.30 0.22 = 0.08$   $\sigma_{\hat{p}_A \hat{p}_B} = \sqrt{\frac{0.30(1 0.30)}{50} + \frac{0.22(1 0.78)}{50}} = 0.087$



Interpreting the Mean: Interpret the value  $\mu_{\hat{p}_A - \hat{p}_B} = 0.08$ .

"For all \_\_\_\_\_ samples of \_\_\_\_\_ students from high school A and \_\_\_\_\_ students from high school B, the  $\underline{\hspace{1cm}}$  (A – B) in sample proportions of students \_\_\_\_\_\_ will have a \_\_\_\_\_ of 0.08." (See graph above)

\*Note: Always be clear what order you are subtracting in.

Interpreting the Standard Deviation: Interpret the value  $\sigma_{\hat{p}_A - \hat{p}_B} = 0.087$ 

"For all \_\_\_\_\_ samples of size \_\_\_\_ students from high school A and \_\_\_\_ students from high school B, the \_\_\_\_\_ (A - B) in sample proportions of students who

\_\_\_\_\_ typically vary by about \_\_\_\_\_ from the \_\_\_ difference of 0.08." (See graph above)

\*Note: Knowing how much a sample statistic \_\_\_\_\_\_ varies from the truth is one of the \_\_\_\_\_ important reasons to study sampling distributions.

# Calculating Probabilities

In high school A, 30% of the students have a driver's license. In high school B, 22% of the students have a driver's license. Suppose we select a random sample of n = 50 students from each high school, would it be unusual to get a greater proportion of students with a driver's license in the

sample from school B?

We want to find: \_\_\_\_\_ Use the blank normal curve at the right to sketch a

picture then calculate the z-score:



\_\_\_\_\_\_. Using technology:  $P(\hat{p}_{\mathrm{A}} - \hat{p}_{\mathrm{B}} < 0) =$  \_\_\_\_\_\_

|                                                                         | Name                   |                               |
|-------------------------------------------------------------------------|------------------------|-------------------------------|
| Interpreting Probabilities:                                             |                        |                               |
| Would it be unusual to get a greater proportion of st                   | udents with a driver   | 's license in the sample from |
| school B?                                                               |                        |                               |
| "Getting a difference (A – B) in sample proportion                      | ns of                  | happens in about              |
| of all possible samples of size 50 from these populat                   | ions. This is not unu  | sual.                         |
| *Note: Knowing what values of a statistic count as ur                   | nusual is one of the i | most important reasons to     |
| study sampling distributions.                                           |                        |                               |
| What Should We Take Away?                                               |                        |                               |
| How do we interpret the parameters of a sampling d                      | istribution of a diffe | rence in sample proportions?  |
| • In                                                                    |                        |                               |
| Reference                                                               | _ of these             | from the populations.         |
| For standard deviation, include "                                       | " or "                 |                               |
|                                                                         |                        |                               |
| How do we calculate and interpret probabilities invo                    | lving a sampling dis   | tribution of a difference in  |
| sample proportions?                                                     |                        |                               |
| <ul> <li>Use normal distribution procedures from Top</li> </ul>         | oic 5.2 with the       | of the                        |
| sampling distributions of $\hat{p}_{ m A}$ - $\hat{p}_{ m B}$ (Video 1) |                        |                               |
| Interpretations should in                                               | and reference          |                               |
| samples of from the                                                     |                        |                               |
|                                                                         |                        |                               |

# AP Statistics CED 5.7 Daily Video 1 (Skill 3.B)

Sampling Distributions for Sample Means

### What Will We Learn?

How do we determine the parameters of a sampling distribution of a sample mean? How do we determine if the shape of a sampling distribution of a sample mean is approximately normal?

# Sampling Lemons:

A large tree produces lemons with weights that are approximately normally distributed with a mean of 4 ounces and a standard deviation of 0.5 ounces. Suppose we select a random sample of n = 6 lemons from the tree, weigh each lemon, and calculate the sample mean weight  $\bar{x}$  for each sample.

Population:

One possible sample:

One possible sample:

One possible sample:

One possible sample:

One possible sample: 3 4 5 3 4 5 4 5 4 5 Weight (oz) 3 4 5 4 5 Weight (oz) 3 4 5 4 5 4 5 Weight (oz) 3 4 5 4 5 4 5 4 5 4 8 4 5 4 8 4 5 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 4 8

 $ar{x}$ 

 $\bar{x}$  = mean weight (oz)

Sampling distribution of  $\bar{x}$ :

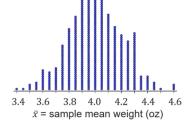
Add the  $\bar{x}$  from the second and third sample to the sampling distribution to the right.

Remember, this is just three possible samples of size six from the population. There are MANY, MANY more.

# Sampling Lemons

Here is a simulated sampling distribution of  $\bar{x} =$  sample mean lemon weight (oz), based on 500 samples of size n = 6 from an approximately normal population with  $\mu = 4$  and  $\sigma = 0.5$ .

When thinking about how you describe a distribution, you should always think about \_\_\_\_\_\_,
and .



© Josh Tabor

The distribution of sample means is:

- •
- •

### Mean and Standard Deviation

Let  $\bar{x}$  be the mean of a sample of size n selected from a population with mean  $\mu$  and standard deviation  $\sigma$ . Then,  $u_{\bar{x}} = u$ 

$$\mu_{\bar{x}} = \mu$$

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$$

\*assuming the sample size is less than 10% of the population size.

Good News! These are on the formula sheet! Take a minute to find them now!

| Name |  |
|------|--|
|      |  |

### Mean and Standard Deviation

In our example, we selected samples of size n = 6 from an approximately normal population with

 $\mu = 4$  and  $\sigma = 0.5$ . Therefore:

$$\mu_{\bar{x}} = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$

 $\sigma_{\bar{x}}$  = \_\_\_\_\_\_ ; assuming 6 is less than \_\_\_\_\_ of all lemons on the tree.

# Shape

Let  $\bar{x}$  be the mean of a sample of size n selected from a population with mean  $\mu$  and standard deviation  $\sigma$ . Then, the sampling distribution of  $\bar{x}$  will be approximately normal when:

• The \_\_\_\_\_ distribution is \_\_\_\_\_ normal (as in the lemon example).

OR

The \_\_\_\_\_\_ distribution is \_\_\_\_\_ approximately normal but the \_\_\_\_\_ size is \_\_\_\_\_ \*e.g., greater than or equal to \_\_\_\_\_\_ (see Topic 5.3).

# What Should We Take Away?

How do we determine the parameters of a sampling distribution of a sample mean?

Mean:  $\mu_{\overline{x}} = \mu$ 

Standard Deviation:  $\sigma_{\overline{x}}=\frac{\sigma}{\sqrt{n}}$ , assuming the sample size is less than 10% of the population size.

How do we determine if the shape of a sampling distribution of a sample mean is approximately normal?

The \_\_\_\_\_ distribution of  $\overline{x}$  will be \_\_\_\_\_ normal when the population distribution is \_\_\_\_\_ normal or the sample size is \_\_\_\_\_ enough  $(n \ge 30)$ .



| Name |
|------|
|------|

# AP Statistics CED 5.7 Daily Video 2 (Skill 4.B)

Sampling Distribution for Sample Means

### What Will We Learn?

How do we interpret the parameters of sampling distribution of a sample mean?

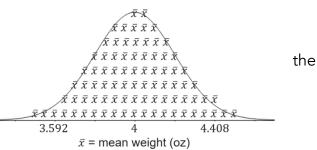
How do we calculate and interpret probabilities involving a sampling distribution of a sample mean?

# Sampling Lemons:

A large tree produces lemons with weights that are approximately normally distributed with a mean of 4 ounces and a standard deviation of 0.5 ounces. Suppose we select a random sample of n = 6 lemons from the tree, weigh each lemon, and calculate the sample mean weight  $\bar{x}$  for each sample.

The sampling of  $\bar{x}$  is:

- \_\_\_\_\_ (because distribution is approximately normal.



# Interpreting the Mean

Interpret the value  $\mu_{\bar{x}} = 4$ :

For \_\_\_\_\_ of size n= \_\_\_\_ from \_\_\_\_ population, the \_\_\_\_\_ mean weights of lemons will have a mean of \_\_\_\_\_\_.

# Interpreting the Standard Deviations

Interpreting the value  $\sigma_{\bar{x}} = 0.204$ 

For \_\_\_\_\_\_ of size n=\_\_\_\_\_ from \_\_\_\_\_ population, the \_\_\_\_\_ mean weights of lemons will \_\_\_\_\_ vary by about \_\_\_\_\_ from the mean of . \*Note, that knowing how much a \_\_\_\_\_ typically varies from the \_\_\_\_\_ is one of the most important reasons to study \_\_\_\_\_ distributions and is the basis of the study of confidence intervals.



Name\_\_\_\_\_

# Calculating Probabilities

A large tree produces lemons with weights that are approximately normally distributed with a mean of 4 ounces and a standard deviation of 0.5 ounces. Suppose we select a random sample of n = 6 lemons from the tree. Would it be **unusual** to get a sample mean of  $\bar{x} = 4.5$ 

or greater in a random sample of size n = 6 this population?



Step 2: Calculate z-score = \_\_\_\_\_



from

Step 3: Calculate  $P(\bar{x} \ge 4.5) =$ \_\_\_\_\_

Step 4: Interpret the probability – Getting \_\_\_\_\_\_ mean of 4.5 ounces or more happens in only about \_\_\_\_\_ of \_\_\_\_ samples of size \_\_\_\_ from this tree. This is \_\_\_\_ unusual.

\*Know what values of a statistic count as \_\_\_\_\_ is one of the most important reasons to study \_\_\_\_\_ distributions.

### What Should We Take Away?

How do we interpret the parameters of sampling distribution of a sample mean?

- In \_\_\_\_\_, with \_\_\_\_
- Reference \_\_\_\_\_\_ of this size from the population.
- For standard deviation, include \_\_\_\_\_ or \_\_\_\_\_.

How do we calculate and interpret probabilities involving a sampling distribution of a sample mean?

- Use \_\_\_\_\_\_ procedures from Topic 5.2 with the parameter of the \_\_\_\_\_\_ distribution of  $\bar{x}$  (Video 1)
- Interpretations should be \_\_\_\_\_\_, \_\_\_\_ and reference \_\_\_\_\_ of this size from the \_\_\_\_\_\_

# AP Statistics CED 5.8 Daily Video 1 (Skill 3.B)

# Sampling Distributions for Difference in Sample Means

### What Will We Learn?

How do we determine the parameters of a sampling distribution of a difference in sample means? How we determine if the shape of a sampling distribution of a difference in sample means is approximately normal?

# Sampling Citrus

A large tree produces lemons with weights that are approximately normally distributed with  $\mu_L$  = 4 ounces and  $\sigma_L$  = .5 ounces. A different tree produces oranges with weights that are approximately normally distributed with  $\mu_0$  = 3 ounces and  $\sigma_0$  = .4 ounces. Suppose we select a random sample of n = 6 fruit from each tree, calculate the mean weight for each sample, and compute the difference in sample means  $\bar{x}_L - \bar{x}_0$ . (Label and plot possible samples points on graph as you watch video)

One possible sample of lemons:

$$\bar{x}_L = 4.1$$
 ounces

One possible sample of oranges:  $\bar{x}_0 = 2.9$  ounces

$$\bar{x}_0 = 2.9 \text{ ounces}$$

 $\bar{x}_L - \bar{x}_O = 1.2$  ounces

Sampling distribution of  $\bar{x}_L - \bar{x}_O$ :

One possible sample of lemons:  $\bar{x}_L =$ \_\_\_\_\_\_

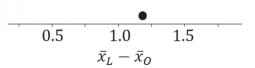
One possible sample of oranges: 
$$\bar{x}_0 = \underline{\hspace{1cm}}$$

$$\bar{x}_L - \bar{x}_O =$$

One possible sample of lemons:  $\bar{x}_L = \underline{\hspace{1cm}}$ 

One possible sample of oranges: 
$$\bar{x}_0 =$$

$$\bar{x}_L - \bar{x}_O =$$

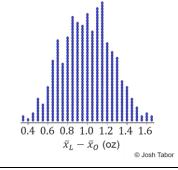


Of course, these are only three of the MANY possible differences.

Here is a simulated sampling distribution of  $\bar{x}_L - \bar{x}_0$  based on 500 random samples of size  $n_L$  = 6 from the lemon tree and 500 random samples of size  $n_0$  = 6 from the orange tree. How would you describe this distribution?

The distribution of  $\bar{x}_L - \bar{x}_O$  is:

- Centered at \_\_\_\_\_ Varies from \_\_\_ \_\_\_\_\_ to about \_



#### Mean and Standard Deviation

Let  $\bar{x}_1$  be the sample mean in a random sample of size  $n_1$  selected from population 1 with  $\mu_1$  and

standard deviation  $\sigma_1$ , and let  $\bar{x}_2$  be the sample mean in a random sample of size  $n_2$  selected from population 2 with  $\mu_2$  and standard deviation  $\sigma_2$ . Then,

$$\mu_{\bar{x}_1 - \bar{x}_2} = \mu_1 - \mu_2$$

$$\sigma_{\bar{x}_1 - \bar{x}_2} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

\*assuming the sample sizes are less than 10% of the population sizes and that the two samples are independent.



| Name    |  |  |  |
|---------|--|--|--|
| ivallie |  |  |  |

#### Mean and Standard Deviation

For the lemons,  $\mu_L$ = 4 ounces and  $\sigma_L$ = .5 ounces.

For the oranges,  $\mu_0$  = 3 ounces and  $\sigma_0$  = .4 ounces.

Therefore,

\* Assuming the samples sizes are \_\_\_\_\_\_ of the population sizes and the two samples are \_\_\_\_\_

#### Mean and Standard Deviation

Good News! These are all on the formula sheet! Take a moment to find them NOW!

#### Shape

The sampling distribution of  $\bar{x}_1 - \bar{x}_2$  will be approximately normal when:

- \_\_\_\_\_ population distributions are approximately normal (as in the citrus example). OR
- The populations are \_\_\_\_\_ approximately normal but both of the sample sizes are \_\_\_\_\_ (e.g., \_\_\_\_\_)

### What Should We Take Away?

How do we determine the parameters of a sampling distribution of a difference in sample means?

Mean:  $\mu_{\overline{x}_1-\overline{x}_2}=\mu_1-\mu_2$ 

SD:  $\sigma_{\overline{x}_1-\overline{x}_2}=\sqrt{\frac{\sigma_1^2}{n_1}+\frac{\sigma_2^2}{n_2}}$ , assuming the sample sizes are less than 10% of the population sizes and the samples are independent.

How we determine if the shape of a sampling distribution of a difference in sample means is approximately normal?

The sampling distribution of  $\bar{x}_1 - \bar{x}_2$  will be approximately normal when the population Distributions are both approximately normal OR when both sample sizes are large enough (e.g., greater than or equal to 30).

# AP Statistics CED 5.8 Daily Video 2 (Skill 4.B)

Sampling Distributions for Differences in Sample Means

#### What Will We Learn?

How do we interpret the parameters of a sampling distribution of a difference in sample means?

How do we calculate and interpret probabilities involving a sampling distribution of a difference in sample means?

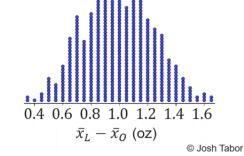
# Sampling Citrus

A large tree produces lemons with weights that are approximately normally distributed with  $\mu_L$  = 4 ounces and  $\sigma_L$  = .5 ounces. A different tree produces oranges with weights that are approximately normally distributed with  $\mu_O$  = 3 ounces and  $\sigma_O$  = .4 ounces. Suppose we select a random sample of n = 6 fruit from each tree,

calculate the mean weight for each sample, and compute the difference in sample means  $\bar{x}_L - \bar{x}_O$ .

The distribution of  $\bar{x}_L - \bar{x}_O$  is:

- \_\_\_\_\_ normal
- $\mu_{\bar{x}_L \bar{x}_O} = \underline{\qquad} = \underline{\qquad} = \underline{\qquad}$
- $\bullet \quad \sigma_{\bar{x}_L \bar{x}_O} =$



| Interp | retina | the | Mear |
|--------|--------|-----|------|

Interpret the value of  $\mu_{\bar{x}_L - \bar{x}_Q} = 1$ 

For \_\_\_\_\_ random samples of \_\_\_\_\_ from the lemon tree and \_\_\_\_ from the orange tree, the differences (L-O) in \_\_\_\_\_ mean weight will have a \_\_\_\_\_ of

# Interpreting the Standard Deviation

Interpret the value  $\sigma_{\bar{x}_L - \bar{x}_O} = 0.26$ .

For \_\_\_\_\_ random samples of \_\_\_\_\_ from the lemon tree and \_\_\_\_\_ from the orange tree, the differences (L-O) in the \_\_\_\_\_ mean weight will \_\_\_\_ vary by \_\_\_\_\_ 0.26 ounces from the \_\_\_\_\_ difference in means of 1 ounce.

\*Knowing how much a \_\_\_\_\_ statistic \_\_\_\_\_ varies from the \_\_\_\_ is one of the most important reasons to study \_\_\_\_\_ distributions!!

# **Calculating Probabilities**

Suppose we selected a random sample of 6 oranges and 6 lemons. Would it be unusual to get a sample mean weight for the lemons that was more than 1.2 ounces greater than the sample mean weight for the oranges?

We want to find  $P(\bar{x}_L - \bar{x}_O > 1.2)$ .

Step 1: Draw a picture.

Step 2: Calculate z-score: \_\_\_\_\_



Step 3: Find probability using Table A or Technology:  $P(\bar{x}_L - \bar{x}_0 > 1.2) =$ 

# **Interpreting Probabilities**

Would it be unusual to get a sample mean weight for the lemons that was more than 1.2 ounces greater than the sample mean weight for the oranges?

 Getting a \_\_\_\_\_\_\_ (L - O) is \_\_\_\_\_\_ mean weights of more that 1.2 ounces

 happens in \_\_\_\_\_\_ of \_\_\_\_\_ possible samples of \_\_\_\_\_\_

 and \_\_\_\_\_\_ from these trees. This is \_\_\_\_\_\_\_.

 \*Knowing what values of a \_\_\_\_\_\_ count as \_\_\_\_\_\_ is one of the most

important reasons to study \_\_\_\_\_\_ distributions.

# What Should We Take Away?

How do we interpret the parameters of a sampling distribution of a difference in sample means?

• In \_\_\_\_\_, with \_\_\_\_\_

• Reference \_\_\_\_\_ possible samples of \_\_\_\_\_ sizes from the populations.

• For standard deviation, include \_\_\_\_\_ or \_\_\_\_\_.

How do we calculate and interpret probabilities involving a sampling distribution of a difference in sample means?

• Use \_\_\_\_\_\_ distribution procedures from Topic 5.2 with the parameters of the \_\_\_\_\_ distribution of  $\bar{x}_1 - \bar{x}_2$  (Video 1).

• Interpretations should be in \_\_\_\_\_\_, with \_\_\_\_\_ and reference \_\_\_\_\_ possible samples of these \_\_\_\_\_ from the populations.

