Calculator Functions for the AP Stats Exam

One Variable Data

Function	When to use it	Input Command
1-Var Stats	To find mean, standard	Enter data in L_1 and frequency in L_2 if
(STAT, CALC)	deviation, and 5 number	needed
	summary for a data set.	1-Var Stats L ₁ or 1-Var Stats L ₁ ,L ₂

Two Variable Data

Function	When to use it	Input Command
LinReg (a + bx)	To find the equation for a	Enter values in L1 (explanatory)
(STAT, CALC)	least squares regression	Enter values in L2 (response)
DiagnosticOn	line. To find r and r ² .	LinReg (a + bx) L_1, L_2

Probability Calculations

Function	When to use it	Input Command
binompdf	To find the probability of	binompdf(n, p, X)
(2 nd , VARS, DISTR)	getting <u>exactly</u> X successes	n: number of trials
	in a binomial setting.	p: probability of success
		X: number of successes
binomcdf	To find the probability of	binomcdf(n, p, X)
(2 nd , VARS, DISTR)	getting <u>at most</u> X	n: number of trials
	successes in a binomial	p: probability of success
	setting.	X: number of successes
normalcdf	To find area for an interval	normalcdf(lower, upper, mean, SD)
(2 nd , VARS, DISTR)	in a normal distribution.	
invNorm	To find a boundary value in	invNorm(area left, mean, SD)
(2 nd , VARS, DISTR)	a normal distribution.	
tcdf	To find area for an interval	tcdf(lower, upper, df)
(2 nd , VARS, DISTR)	in a <i>t</i> distribution.	
invT	To find a boundary value in	invT(area left, df)
(2 nd , VARS, DISTR)	a <i>t</i> distribution.	
χ^2 cdf	To find area for an interval	χ^2 cdf(lower, upper, df)
(2 nd , VARS, DISTR)	in a χ^2 distribution.	

Math Medic

Confidence Intervals

Function	When to use it	Input Command
1-PropZInt	To calculate a confidence	1-PropZInt
(STAT, TESTS, A:)	interval to estimate a	x: number of successes
	single proportion.	n: sample size
		C-Level: confidence level
2-PropZInt	To calculate a confidence	2-PropZInt
(STAT, TESTS, B:)	interval to estimate a	x1: number of successes in sample 1
	difference of proportions.	n1: sample size of sample 1
		x2: number of successes in sample 2
		n2: sample size of sample 2
		C-Level: confidence level
TInterval	To calculate a confidence	TInterval
(STAT, TESTS, 8:)	interval to estimate a	Inpt: Stats
	<u>single mean.</u>	$ar{x}$: sample mean
		<i>S_x</i> : sample standard deviation
	Standard deviation of the	n: sample size
	population is unknown.	C-Level: confidence level
2-SampTInt	To calculate a confidence	2-SampTInt
(STAT, TESTS, 0:)	interval to estimate a	Inpt: Stats
	<u>difference of means</u> .	\bar{x} 1: sample mean of sample 1
		Sx1: standard deviation of sample 1
		n1: sample size of sample 1
		\bar{x} 2: sample mean of sample 2
		Sx2: standard deviation of sample 2
	Standard deviation of the	n2: sample size of sample 2
	populations unknown.	C-Level: confidence level
		Pooled: No
	To calculate a confidence	LinRegTInt
(STAT, TESTS, G:)	interval to estimate a	Enter values in L_1 (explanatory)
*	<u>slope</u> .	Enter values in L ₂ (response)
*only newer		Xlist: L ₁
calculators have		Ylist: L ₂
this command*		Freq: 1
		C-Level: confidence level

Math Medic

Significance Tests

Function	When to use it	Input Command
1-PropZTest	To test a claim made about	1-PropZTest
(STAT, TESTS, 5:)	a <u>single proportion</u> .	po: null value
		x: number of successes
		n: sample size
		Prop: $\neq p_0 < p_0 > p_o$ (alternative)
2-PropZTest	To test a claim made about	2-PropZTest
(STAT, TESTS, 6:)	a <u>difference of proportions</u> .	x1: number of successes sample 1
		n1: sample size of sample 1
		x2: number of successes sample 2
		n2: sample size of sample 2
		p1: ≠p2 <p2>p2 (alternative)</p2>
T-Test	To test a claim made about	T-Test
(STAT, TESTS, 2:)	a <u>single mean</u>	Inpt: Stats
		μ_0 : null value
		$ar{x}$: sample mean
	Standard deviation of the	S _x : sample standard deviation
	population is unknown.	n: sample size
		$\mu: eq \mu_0 < \mu_0 > \mu_0$ (alternative)
2-SampTTest	To test a claim made about	2-SampTTest
(STAT, TESTS, 4:)	a <u>difference of means</u>	Inpt: Stats
		\bar{x} 1: sample mean of sample 1
		Sx1: standard deviation sample 1
		n1: sample size of sample 1
		\bar{x} 2: sample mean of sample 2
		Sx2: standard deviation sample 2
	Standard deviation of the	n2: sample size of sample 2
	populations unknown.	µ1: ≠µ2 <µ2 >µ2 (alternative)
		Pooled: No

Math Medic

Significance Tests – continued

Function	When to use it	Input Command
χ^2 GOF–Test	To test a claim about the	χ^2 GOF–Test
(STAT, TESTS, D:)	distribution of a categorical	Enter observed counts in L1
	<u>variable</u> .	Enter expected counts in L ₂
*only newer	Chi square goodness-	Observed: L1
calculators have	of-fit test	Expected: L ₂
this command*		df: degrees of freedom
χ^2 –Test	To test a claim about the	χ^2 –Test
(STAT, TESTS, C:)	distribution of a categorical	Enter observed counts in matrix A
	<u>variable.</u>	
	Chi square test of	Observed: [A]
	homogeneity	Expected: [B]
	Chi square test of	
	independence	Expected counts appear in matrix B
LinRegTTest	To test a claim made about	LinRegTTest
(STAT, TESTS, E:)	the <u>slope</u> of a population	Enter values in L1 (explanatory)
	regression line.	Enter values in L2 (response)
		Xlist: L ₁
		Ylist: L ₂
		Freq: 1
		$\beta: \neq 0 < 0 > 0$ (alternative)