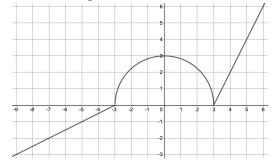

Video 5.2 Connecting Derivatives



$$f''(x)$$
=slopes of f'

f(x)	f'(x)	f''(x)
f(x) is increasing		
f(x) is decreasing		
f(x) has a critical point		
f(x) has a relative maximum		
f(x) has a relative minimum		
f(x) is concave up		
f(x) is concave down		
f(x) has a point of inflection		

Example 1: The graph of h'(x), the derivative of h(x) is shown below for $-9 \le x \le 6$ and consists of a semicircle and two line segments.

AP Exam Tips:

- a) On which open intervals is h(x) decreasing? Justify your answer.
- b) For which values of x does h(x) have a relative minimum? Justify your answer.
- c) For which values of x does h(x) have a point of inflection? Justify your answer.