

Find end behavior. Use TFEPLC and rational function rules comparing the degree of the numerator and denominator.	Simplify. Let $x = a$. (Direct substitution)
$\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x)$ and $\lim_{x \to a} f(x) = f(a)$	$\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x)$
If $\lim_{x \to a} \frac{f(x)}{g(x)}$ is indeterminate $\left(\frac{0}{0} \text{ or } \frac{\infty}{\infty}\right)$ Then $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$	f(x) is continuous at $x = a$ and $\lim_{x \to a^{-}} f'(x) = \lim_{x \to a^{+}} f'(x)$
$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} \text{ or}$ $\lim_{h \to 0} \frac{f(a + h) - f(a)}{h}$
nx ⁿ⁻¹	0

f(x)g'(x) + g(x)f'(x)	$c \cdot f'(x)$
$g'(x) \cdot f'(g(x))$	$\frac{g(x) \cdot f'(x) - f(x)g'(x)}{(g(x))^2}$
— sin <i>x</i>	cos x
$-\csc^2 x$	$\sec^2 x$
-csc x cot x	sec x tan x

e ^x	$\frac{1}{x}$
$\frac{1}{\sqrt{1-x^2}}$	$a^x \cdot \ln a$
$\frac{1}{ x \sqrt{x^2-1}}$	$\frac{1}{1+x^2}$
$g'(x) = \frac{1}{f'(g(x))}$ Slopes at inverse points are reciprocals.	Opposite of the derivative of the corresponding function
Differentiate both sides with respect to <i>x</i> . Treat <i>y</i> as a function of <i>x</i> and apply chain rule.	Find the slope using the graph. There is no shortcut rule for this function!

A critical point is any interior point where $f'(x) = 0$ or f'(x) is undefined.	Find the slope of the secant line. $\frac{f(b) - f(a)}{b - a}$
Inflection points will exist where <i>f</i> " changes signs.	Candidate's test: Compare function outputs at endpoints and points where <i>f</i> ' changes sign. The <i>y</i> -value is the max/min!
Use end behavior. Find $\lim_{x\to-\infty} f(x) \text{ and } \lim_{x\to\infty} f(x)$	Set the denominator equal to 0 and solve for <i>x</i> .
	Write an equation that models the situation. Implicitly differentiate all variables that are changing with respect to time.
ax + C	<i>x</i> + <i>C</i>

$\ln x + C$	$\frac{x^{n+1}}{n+1} + C$
$-\cos x + C$	$\sin x + C$
$-\cot x + C$	$\tan x + C$
$-\csc x + C$	$\sec x + C$
$\frac{1}{\ln a} \cdot a^x + C$	$e^x + C$

$\tan^{-1}x + C$	$\sin^{-1}x + C$
Use geometry! This is a semicircle of radius <i>r</i> !	$\sec^{-1} x + C$
If $f(x)$ is continuous on $[a, b]$ and differentiable on (a, b) then $\frac{f(b) - f(a)}{b - a} = f'(c)$ For some value c in (a, b) . Slope of the secant line = slope of the tangent line. Average rate of change = instantaneous rate of change.	If $f(x)$ is continuous on [a, b] then $f(x)$ takes on every value between $f(a)$ and $f(b)$.
v(t) and a(t) have opposite signs	v(t) and $a(t)$ have the same sign
From x =to x =the net change in is (units). 1. Interval 2. Context 3. Net change or accumulation 4. Units	At x =, theis changing at a rate of (units). 1. Instant 2. Context 3. Rate of change 4. Units

f' < 0	f' > 0
f'' < 0	$f^{\prime\prime} > 0$
f'(x) = 0 or undefined and f' changes from - to + OR f'(x) = 0 and $f''(x) > 0$	f'(x) = 0 or undefined and f' changes from + to - OR f'(x) = 0 and $f''(x) < 0$
The response must include a definition or theorem. Be sure to verify the conditions of the theorem!	The response must include: 1.Meaning in context 2.Units 3.Time

Riemann
Sum
when f is
when f is
RightUnder
estimate
when f is
when f is
decreasing
decreasing
$$\sum_{k=1}^{n} f(x_k) \cdot \Delta x$$

height width
The y-value/height could be at the left, right, or
midpoint of each interval.f is concave up
f is concave down $A = \frac{1}{2} \Delta x(y_0 + y_1)$
 $+ \frac{1}{2} \Delta x(y_1 + y_2) +$
... \int_{a}^{b} (higher - lower) $dx = \int_{c}^{b} [f(x) - g(x)] dx$
 \int_{c}^{d} (right - left) $dy = \int_{c}^{d} [f(y) - g(y)] dy$ $\int_{a}^{b} h(radius)^{2} dx$
 $\int_{c}^{d} \pi(radius)^{2} dx$
 $\int_{c}^{d} \pi(radius)^{2} dy$ $\int_{a}^{b} (area of one cross section) dx$ $\int_{a}^{b} (area of one cross section) dy$

$f(a) + \int_{a}^{b} f'(x) dx$ Starting amount + accumulation	$f(x)]_{a}^{b} = f(b) - f(a)$ This gives the net change in the amount or position.
f(t), x(t), or y(t) f'(t), x'(t), or y'(t) f''(t), x''(t), or y''(t)	$\int_{a}^{b} v(t) dt$
$f(v(x)) \cdot v'(x)$ Plug in the upper limit of integration. Multiply by the derivative of the upper limit.	v(t)
Separate Integrate Solve for C Isolate y Select the proper solution	$\frac{1}{b-a}\int_{a}^{b}f(x)dx$
$\int_{t_1}^{t_2} v(t) dt$	Exponential growth! $y = y_0 e^{kt}$