




$$f(x) = \frac{x-3}{x+3}$$

$$f(x) = (x - 5)^2 + 4$$

$$f(x) = (x-3)(x-7)$$

$$f(x) = -(x-6)^3 + 4$$

$$f(x) = -7\left(\frac{1}{2}\right)^x$$

$$f(x) = 5\log_2 x$$

7 8 $f(x) = x(x+2)^2$ $f(x) = 7 \cdot 2^x$ 9 10 $f(x) = \frac{(x+3)(3-x)}{x+3}$ $f(x) = -x^2 + 10x - 25$ 11 12 $f(x) = 5\log_{0.5}(-x)$ $f(x) = \frac{1}{x - 3}$

$f(x) = (x - 6)^3 - 4$	$f(x) = x^2 - 10x + 25$
f(x) = x(2-x)(x+2)	$f(x) = \frac{x+3}{x-3}$
$f(x) = -7 \cdot 2^x$	$f(x) = 5\log_2(-x)$

 $f(x) = \frac{(x+3)(x-3)}{x+3}$

20

 $f(x) = 7\left(\frac{1}{2}\right)^x$

21

 $f(x) = -[(x-5)^2 - 4]$

22

 $f(x) = (x+6)^3 - 4$

23

 $f(x) = 5\log_{0.5} x$

24

 $f(x) = -\frac{x+3}{(x+3)(x-3)}$

As inputs increase additively by 1, outputs double. $f(0) < 0$	Constant positive change in the average rates of change over consecutive equal-length input intervals and relative minimum of 4
C Constant positive third differences over equal-length input intervals and two distinct zeros	Vertical asymptote at $x = 3$, horizontal asymptote at $y = 1$, x-intercept of $x = -3$
e Constant positive third differences over equal-length input intervals and inflection point at $x = -6$	f For $x > 0$, as inputs double, outputs increase additively by 5.

As inputs increase additively by 1, outputs halve. $f(0) < 0$	As inputs increase additively by 1, outputs double. $f(0) > 0$
Vertical asymptote at $x=3$, horizontal asymptote at $y=0$, hole at $x=-3$	Journal of the second of the
Constant negative change in the average rates of change over consecutive equal-length input intervals and relative maximum of 4	Constant negative third differences over equal-length input intervals and three distinct zeros

m For $x > 0$, as inputs double, outputs decrease additively by 5.	Constant positive change in the average rate of change over consecutive equal-length input intervals and relative minimum of -4
Constant negative third differences over equal-length input intervals and inflection point at $x=6$	Constant negative change in the average rates of change over consecutive equal-length input intervals and relative maximum of 0
Vertical asymptote at $x = -3$, horizontal asymptote at $y = 1$, x-intercept of $x = 3$	r For $x < 0$, as inputs halve, outputs decrease additively by 5.

S	t
Constant positive change in the average rates of change over consecutive equal-length input intervals and relative minimum of 0	Constant positive third differences over equal-length input intervals and inflection point at $x = 6$
u	V
Hole at $(-3, -6)$, x-intercept of $x = 3$	For $x < 0$, as inputs halve, outputs increase additively by 5.
W	×
As inputs increase additively by 1, outputs halve. $f(0) > 0$	Hole at $(-3,6)$, x-intercept of $x = 3$

*

$$\lim_{x \to -\infty} f(x) = -\infty$$

$$\lim_{x \to \infty} f(x) = 0$$

~

$$\lim_{x\to\infty}f(x)=\infty$$

$$\lim_{x \to -\infty} f(x) = -\infty$$

#

$$\lim_{x \to 3^{-}} f(x) = -\infty$$

$$\lim_{x \to 3^+} f(x) = \infty$$

$$\lim_{x \to -\infty} f(x) = 1$$

$$\lim_{x \to \infty} f(x) = 1$$

\$

$$\lim_{x \to 0^+} f(x) = \infty$$

$$\lim_{x \to \infty} f(x) = -\infty$$

@

$$\lim_{x \to \infty} f(x) = -\infty$$

$$\lim_{x \to -\infty} f(x) = \infty$$

Λ

$$\lim_{x \to \infty} f(x) = -\infty$$

$$\lim_{x \to -\infty} f(x) = -\infty$$

=

$$\lim_{x\to\infty}f(x)=\infty$$

$$\lim_{x\to -\infty} f(x) = \infty$$

İ

$$\lim_{x \to -\infty} f(x) = 0$$

$$\lim_{x \to \infty} f(x) = -\infty$$

&

$$\lim_{x \to -3^-} f(x) = -6$$

$$\lim_{x \to -3^+} f(x) = -6$$

$$\lim_{x \to -\infty} f(x) = -\infty$$

$$\lim_{x \to \infty} f(x) = \infty$$

+

$$\lim_{x \to 0^+} f(x) = -\infty$$

$$\lim_{x\to\infty}f(x)=\infty$$

%

$$\lim_{x \to -3^{-}} f(x) = \frac{1}{6}$$

$$\lim_{x \to -3^+} f(x) = \frac{1}{6}$$

$$\lim_{x\to 3^-} f(x) = \infty$$

$$\lim_{x \to 3^+} f(x) = -\infty$$

(

$$\lim_{x\to\infty}f(x)=\infty$$

$$\lim_{x \to -\infty} f(x) = -\infty$$

 \sum (R) $\lim_{x \to 3^{-}} f(x) = -\infty$ $\lim_{x \to \infty} f(x) = \infty$ $\lim_{x \to 3^+} f(x) = \infty$ $\lim_{x \to -\infty} f(x) = -\infty$ $\lim_{x \to -\infty} f(x) = 0$ $\lim_{x\to\infty}f(x)=0$ ¥ π $\lim_{x \to -3^-} f(x) = 6$ $\lim_{x \to \infty} f(x) = \infty$ $\lim_{x \to -3^+} f(x) = 6$ $\lim_{x \to -\infty} f(x) = \infty$ $\lim_{x \to -\infty} f(x) = \infty$ $\lim_{x \to \infty} f(x) = -\infty$ ß (C) $\lim_{x \to 0^{-}} f(x) = -\infty$ $\lim_{x \to -\infty} f(x) = 0$ $\lim_{x \to -\infty} f(x) = \infty$ $\lim_{x\to\infty}f(x)=\infty$

Δ Ω $\lim_{x\to\infty}f(x)=-\infty$ $\lim_{x \to \infty} f(x) = -\infty$ $\lim_{x \to -\infty} f(x) = -\infty$ $\lim_{x \to -\infty} f(x) = \infty$ ≈ $\lim_{x \to -\infty} f(x) = \infty$ $\lim_{x\to 0^-} f(x) = \infty$ $\lim_{x \to \infty} f(x) = 0$ $\lim_{x \to -\infty} f(x) = -\infty$ ¢ **≠** $\lim_{x \to -3^-} f(x) = \infty$ $\lim_{x\to\infty}f(x)=\infty$ $\lim_{x \to -3^+} f(x) = -\infty$ $\lim_{x \to -\infty} f(x) = \infty$ $\lim_{x \to -\infty} f(x) = 1$ $\lim_{x \to \infty} f(x) = 1$