Solutions to Practice Question 2: Modeling a Non-periodic Context

2. The temperature of Shania's butternut squash soup when it is first removed from the stove (t=0) is 185° Fahrenheit. Ten minutes later (t=10), Shania uses a thermometer to determine that the temperature of the soup has cooled to 130° Fahrenheit.

The temperature of Shania's bowl of soup can be modeled by the function S given by $S(t) = ab^t + 72$, where S(t) is the temperature of the soup, in degrees Fahrenheit (°F), and t is the number of minutes since the soup was removed from the stove.

(A)	(i)	Since $S(0)=185$ and $S(10)=130$, two equations to find a and b are: $185=ab^0+72$ $130=ab^{10}+72$	1 pt
	(ii)	$185 = ab^0 + 72 \Rightarrow a = 185 - 74 = 113$	1 pt
		$130 = 113b^{10} + 72 \Longrightarrow b = \left(\frac{130 - 72}{113}\right)^{\frac{1}{10}} = 0.935481$	
(B)	(i)	$\frac{S(10) - S(0)}{10 - 0} = \frac{130 - 185}{10} = -5.5^{\circ} \text{F per minute}$	1 pt
	(ii)	The secant line between $t=0$ and $t=10$ passes through the points (0,185)	1 pt
		and (10,130) and is given by $y = 185 - 5.5t$ or $y = 130 - 5.5(t - 10)$. For	
		$t=8,y=185-5.5(8)=141^\circ$. The temperature of the soup 8 minutes after	
		it was removed from the stove was approximately 141°.	
	(iii)	The temperature values estimated using the average rate of change are the y-coordinates of the points on the secant line between $(0,185)$ and $(10,130)$. Since S is an exponential decay function that is decreasing and concave up on its entire domain, the secant line between $t=0$ and $t=10$ will be above the graph of S on the entire interval $(0,10)$. Thus, estimates for the temperature of the soup between $t=0$ and $t=10$ found using the average rate of change will be strictly greater than the values predicted by the model.	1 pt
(C)	The value of M represents the ambient temperature of the room the soup is in and $y=M$ represents the horizontal asymptote of S . Analyzing the end behavior of S shows that $M=72$. Shania finishes the soup by the time the temperature is 10° above the room temperature, or 82° . Solving $S(t)=82$ gives $t=36.357$. Thus, an appropriate domain would be $0 \le t \le 36.357$ or $0 \le t \le 36$.		1 pt

