Geometry Unit 1: Reasoning in Geometry

Lesson	Learning Targets
1.1 Creating Definitions	 Understand the process of writing a good definition requires classifying, differentiating and testing the definition by looking for counterexamples. Define basic geometric terms by looking at examples and nonexamples.
1.2 Inductive Reasoning	 Define inductive reasoning as the process of making conjectures based on patterns and examples. Apply inductive reasoning to find a general rule for a given pattern or sequence.
1.3 Conditional Statements	 Identify the condition and conclusion of a conditional statement. Write the converse of a conditional statement and determine if it is true.
1.4 What is Deductive Reasoning?	 Justify a claim using informal arguments. Define deductive reasoning as the process of proving a claim with a sequence of logical statements.
1.5 Using Deductive Reasoning	 Disprove a claim using counterexamples. Understand the difference between supporting a claim with examples and proving a claim.
1.6 Visual Reasoning	 Use visuals to justify algebraic, numeric, and geometric results.

Geometry Unit 2: Building Blocks of Geometry

Lesson	Learning Targets
2.1 Points, Lines, Segments, and	Use precise terminology and notation to refer to
Rays	points, segments, lines, and rays.
	 Define congruent segments as segments with
	equal lengths and solve for missing segment
	lengths.
	 Draw and mark geometric figures.
2.2 Coordinate Connection:	 Understand that a midpoint divides a segment into
Midpoint	two congruent parts and is equidistant from both
	endpoints.
	Given two endpoints, find the coordinates of the
	midpoint and given an endpoint and a midpoint,
	find the coordinates of the other endpoint.
2.3 Naming and Classifying	• Define, name, and measure angles accurately and
Angles	precisely.
	Determine angle measurements by attending to
	congruence markings, angle addition, and angle
	bisectors.
2.4 Vertical Angles and Linear	Discover and apply vertical angle and linear pair
Pairs	relationships.
2.5 Angles on Parallel Lines	Identify corresponding, same side interior,
	alternate interior, and alternate exterior angles on a
	transversal.
	Discover and apply the properties of the angles
	formed by a transversal cutting parallel lines.
	Use congruent angles on a transversal to write
	informal proofs about parallel lines.
2.6 Coordinate Connection:	Graph equations of lines.
Parallel vs. Perpendicular	vvrite equations of lines in slope-intercept form.
	Use the coordinate grid to reason about parallel
	and perpendicular slopes.

Geometry Unit 3: Congruence Transformations

Lesson	Learning Targets
3.1 Introduction to Transformations	 Identify the motions made by translations, reflections, and rotations. Visualize the sequence of "moves" required to take a preimage to its image. Informally describe the set of transformations that take a preimage to its image and understand that this sequence is not unique.
3.2 Translations	 Understand that translations are rigid motions that move each point some fixed horizontal and vertical distance. Write a translation rule. Give the ordered pairs of the image after a translation.
3.3 Reflections	 Identify patterns in ordered pairs when a figure is reflected across the x-axis, y-axis, or the line y=x. Perform reflections using patty paper and ordered pair rules. Recognize that a point and its image after a reflection are equidistant from the line of reflection.
3.4 Rotations	 Identify patterns in ordered pairs when a figure is rotated 90°, 180°, or 270° counterclockwise. Perform and describe rotations in the coordinate plane.
3.5 Compositions of Transformations	 Perform 2 or more transformations in sequence on the coordinate plane. Determine the sequence of transformations that takes a preimage to its image. Explore the outcomes of changing the sequence in which transformations are performed.
3.6 Definition of Congruence	 Given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent. Identify corresponding sides and angles in congruent figures and write congruence statements. Distinguish between transformations that are isometries and those that aren't.

3.7 Coordinate Connection: Transformations of Equations	 Understand that rigid transformations can be applied to algebraic equations and their graphs, which represent a particular set of ordered pairs. Connect graphical and algebraic representations of reflections and translations. Given an equation, determine the transformation that occurred.
--	--

Geometry Unit 4: Triangles and Proof

Lesson	Learning Targets
4.1 What Makes a Triangle?	 Determine when three side lengths will form a triangle. Classify triangles by angles and sides
4.2 Triangle Properties	 Explain why the sum of the angles in a triangle is always 180°. Notice a relationship between the exterior angle of a triangle and the sum of the non-adjacent interior angles. Solve for missing angles in triangles.
4.3 Proving the Exterior Angle Conjecture	 Generalize an argument for the exterior angle conjecture. Introduce the structure of a flow-chart proof.
4.4 Angle Side Relationships in Triangles	 Determine the relationship between the location of the largest sides and largest angles in a triangle. Discover properties of isosceles and equilateral triangles.
4.5 Right Triangles & Pythagorean Theorem	 Understand that the Pythagorean Theorem gives the relationship between the areas of the squares made from the sides of a right triangle. Solve for missing sides in a right triangle. Determine if a triangle is right, acute, or obtuse based on its side lengths.
4.6 Coordinate Connection: Distance	• Connect distance in the coordinate plane with finding the length of the hypotenuse of a right triangle.
4.7 Establishing Congruent Parts in Triangles	 Know that two triangles are congruent if they have exactly the same three sides and exactly the same three angles. Given two congruent triangles, find missing sides and angles in either triangle using CPCTC. Apply triangle properties and definitions to establish congruent parts (e.g. bisector, midpoint, Pythagorean theorem, triangle angle sum, vertical angles, etc.).

4.8 Triangle Congruence Shortcuts	 Understand that when given three sides of a triangle or two sides and an included angle, only one unique triangle can be made, thus establishing congruence. Determine if two triangles are congruent using the SSS and SAS criteria. Notice that triangle congruence proofs require identifying, organizing, and justifying the congruent parts of two triangles.
4.9 More Triangle Congruence Shortcuts	 Understand that triangles with the same angles have the same shape and that similar triangles with a scale factor of 1 are congruent. Determine if two triangles are congruent using the ASA and AAS criteria. Notice that triangle congruence proofs require identifying, organizing, and justifying the congruent parts of two triangles.
4.10 Triangle Congruence Proofs	 Understand the sequence of a proof as starting with the givens and concluding with the proof statement. Identify the statements and reasons needed to complete a logical argument. Use the flowchart structure to write proofs.

Geometry Unit 5: Quadrilaterals and Other Polygons

Lesson	Learning Targets
5.1 Quadrilateral Hierarchy	 Explain how quadrilaterals can belong to one or more subgroups based on their attributes. Review definitions of quadrilaterals, parallelograms, rectangles, squares, rhombi, kites, and trapezoids. Distinguish between convex and concave polygons.
5.2 Proving Parallelogram Properties	• Use congruent triangles and angles on a transversal to prove properties about parallelograms.
5.3 Properties of Special Parallelograms	• Use congruent triangles to prove properties about the diagonals of rectangles, rhombi, and squares.
5.4 Coordinate Connection: Quadrilaterals on the Plane	• Use slope and distance on the coordinate plane to classify quadrilaterals given by ordered pairs.
5.5 Areas of Quadrilaterals	 Use the properties of special quadrilaterals to decompose shapes into rectangles and find their area. Connect the dimensions of the original shape to the base and height of a rectangle to generate an area formula for parallelograms, trapezoids, and rhombi.
5.6 Polygon Interior and Exterior Angle Sums	 Generalize a formula for finding the interior angle sum of any polygon by decomposing the shape into triangles. Given the number of sides of a polygon, determine the angle sum and solve for missing angles; given the angle sum, solve for the number of sides of a polygon. Explain why the exterior angle sum of any polygon is always 360°.
5.7 Regular Polygons and their Areas	 Solve for side lengths and apothems using properties of regular polygons. Decompose regular polygons into congruent triangles in order to find their areas.

Geometry Unit 6: Similarity

Lesson	Learning Targets
6.1 Dilations, Scale Factor, and Similarity	 Understand that dilations produce similar figures where ratios of sides within and between figures are preserved. Use proportional reasoning to solve for missing sides of similar figures; given similar figures, determine the scale factor.
6.2 Coordinate Connection: Dilations on the Plane	 Understand that dilations produce similar figures where the ratio of corresponding parts is given by the scale factor. Explore the properties of dilations given by a center and a scale factor and use them to explain why similar figures have proportional sides and congruent corresponding angles.
6.3 Proving Similar Figures	 Determine if two figures are similar by describing the sequence of similarity transformations that carry the first figure to the second. Determine if two triangles are similar by verifying that all corresponding angles are congruent and all corresponding sides are proportional.
6.4 Triangle Similarity Shortcuts	 Establish AA, SSS, and SAS similarity criteria. Use similarity criteria to solve problems and prove relationships in geometric figures.
6.5 Proportional Segments between Parallel Lines	 Use similar triangles to identify and solve for proportional segments between parallel lines.
6.6 Area and Perimeter of Similar Figures	 Explain why sides and perimeter of similar figures grow by the scale factor and area grows by the square of the scale factor. Use relationships between perimeter and area of similar figures to solve for missing sides and areas.

Geometry Unit 7: Special Right Triangles & Trigonometry

Lesson	Learning Targets
7.1 45°, 45°, 90° Triangles	 Discover a relationship between the legs and hypotenuse of a 45°, 45°, 90° triangle and use this to solve for missing sides. Simplify radicals.
7.2 30°, 60°, 90° Triangles	 Discover the relationship between the legs and hypotenuse of a 30°, 60°, 90° triangle and use this to solve for missing sides.
7.3 Trigonometric Ratios	 Understand that the sine, cosine, and tangent give specific ratios of sides in a right triangle in reference to one of the acute angles. Interpret values of the sine, cosine, and tangent. Write sine, cosine, and tangent ratios for both acute angles in a right triangle.
7.4 Using Trig Ratios to Solve for Missing Sides	 Use a calculator to find sine, cosine, and tangent ratios for a given right triangle and interpret these ratios. Given an angle and side in a right triangle, choose a trig ratio and use proportional reasoning to solve for a missing side.
7.5 Inverse Trig Ratios	 Understand that the ratios of sides in a right triangle determine the angles. Solve for missing angles in a right triangle using inverse trig ratios.
7.6 Applications of Trigonometry	 Use trig ratios and the Pythagorean Theorem to solve right triangles in applied problems. Interpret statements about heights, distances, and angles of elevation and depression.

Geometry Unit 8: Circles

Lesson	Learning Targets
8.1 Coordinate Connection: Equation of a Circle	 Understand a circle as the set of all points that are exactly one radius away from a given center. Use the Pythagorean Theorem to write the equation of a circle given the center and radius; identify the center and radius of a circle given the equation Determine if an ordered pair is inside, on, or outside a circle.
8.2 Circle Vocabulary	 Define the terms major arc, minor arc, chord, tangent line, radius, and diameter. Identify the measure of an arc as the measure of its corresponding central angle.
8.3 Tangents to Circles	 Identify that a tangent line to a circle is perpendicular to the radius at the point of tangency and explore related properties. Solve problems involving tangents to circles.
8.4 Chords and Arcs	 Understand that congruent chords are equidistant from the center and imply congruent intercepted arcs and congruent central angles. Solve problems using chord and arc properties.
8.5 Perpendicular Bisectors of Chords	 Explore why the perpendicular bisector of a chord must pass through the center of the circle, and why a diameter perpendicular to the chord must bisect the chord. Solve problems using perpendicular bisectors of chords.
8.6 Inscribed Angles and Quadrilaterals	 Describe and apply the relationship between an inscribed angle and the arc it intercepts. Explain why the angle inscribed in a diameter is a right angle. Prove using inscribed angles why opposite angles in an inscribed quadrilateral are supplementary.

8.7 Area and Circumference of a Circle	 Generate formulas for the circumference and area of a circle. Given the radius, diameter, circumference, or area of a circle, solve for a different measurement of the circle.
8.8 Area of a Sector	 Define sectors as slices of circles that contain a fraction of the total area. Understand that the area of a sector is proportional to the central angle and use this to calculate area.
8.9 Arc Length	 Define arc length as distance around a circle that makes up a fraction of the circumference. Understand that arc length is proportional to the central angle and use this to calculate arc length.

Geometry Unit 9: Surface Area and Volume

Lesson	Learning Targets
9.1 Introducing Volume with Prisms and Cylinders	 Make sense of nontraditional and traditional units of volume for describing the space inside a container. Understand the volume formulas of prisms and cylinders as representing stacked layers of the base shape. Solve problems related to the volumes of prisms and cylinders.
9.2 Surface Area and Volume of Prisms and Cylinders	 Explore how changing the dimensions of cylinders and prisms affects their volumes. Connect the dimensions of a cylinder and prism to the measurements on a net of the solid and use this to calculate surface area.
9.3 Volume of Pyramids and Cones	• Explain the relationship between the volume of a cone and cylinder, and pyramid and prism and use this to solve volume problems.
9.4 Surface Area of Pyramids and Cones	 Connect the dimensions of a cone and pyramid to the measurements on a net of the solid. Find the lateral and surface area of cones and pyramids.
9.5 Volume of Spheres	 Consider how changes in the radius of a sphere affect its volume. Use the volume formula of a sphere to solve problems.
9.6 Surface Area of Spheres	 Understand the relationship between the formulas for area, surface area, and volume in relation to spheres. Use the surface area formula of a sphere to solve problems.
9.7 Problem Solving with Volume	 Use mathematical tools to solve a problem related to surface area and volume for which there is no immediately obvious strategy. Understand that problem solving requires making and evaluating assumptions, choosing and justifying a strategy, and assessing the reasonableness of an answer.
9.8 Volume of Similar Solids	 Understand how scaling the side lengths of a solid affect the surface area and volume. Determine dimensions and volumes of similar solids.

Geometry Unit 10: Statistics

Lesson	Learning Targets
10.1 Categorical Data and Displays	 Identify categorical and quantitative variables. Organize data in frequency and relative frequency tables. Interpret bar charts and pie charts.
10.2 Measures of Center for Quantitative Data	 Calculate a mean and median from a set of values and from a graph of a distribution. Understand the effects of outliers on a mean or median.
10.3 Measures of Spread for Quantitative Data	 Calculate and interpret range and standard deviation from a data set. Use the graph of a set of data to make conclusions about standard deviation. Understand the effect of outliers on range and standard deviation.
10.4 Scatterplots and Line of Best Fit	 Identify explanatory and response variables. Create and describe a scatterplot for two-variable data. Interpret the slope and y-intercept of a line of best fit.
10.5 Predictions and Residuals	 Use a line of best fit to make predictions. Calculate and interpret a residual using linear models.
10.6 Models for Nonlinear Data	 Describe non-linear models. Calculate and interpret a residual using non-linear models.
10.7 Probability Models and Rules	 Understand that probabilities describe the results of a long run. Use proper notation to describe the probability of an event. Learn and apply basic rules of probability.
10.8 Probability using Two-Way Tables	 Decide if two events are mutually exclusive. Apply the general addition rule for any two events: P(A or B) = P(A) + P(B) - P(A and B). Use two-way tables to find probabilities, including conditional probabilities.

10.9 Probability using Tree Diagrams	 Decide if two events are independent. Apply the general multiplication rule for any two events: P(A or B) = P(A) × P(B A). Use tree diagrams to find the probability of more than one event occurring.
10.10 Random Sampling	 Understand the difference between a population and a sample. Understand that estimates based on random samples will display sampling variability. Describe the population to which results can be generalized based on the sampling method utilized.
10.11 Margin of Error	 Understand and interpret, but do not calculate, margin of error. Construct a confidence interval when given an estimate and a margin of error. Understand that a larger sample size leads to a smaller margin of error.
10.12 Observational Studies and Experiments	 Understand the difference between an observational study and an experiment. Understand how random assignment accounts for confounding variables, so we can find evidence for a causal relationship. Understand the difference between correlation and causation.
10.13 Random Sample and Random Assignment	 Understand that a random sample allows the results of a study to be generalized to a larger population. Understand that random assignment in an experiment is needed to show causation.