#### AP Statistics CED 4.1 Daily Video 1 (Skill 1.A)

Introducing Statistics – Random and Non-Random Patterns

| What Will We Learn?                                                                                                         |                           |                   |                                     |                                 |                 |                                            |
|-----------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------|-------------------------------------|---------------------------------|-----------------|--------------------------------------------|
| What is a random process?                                                                                                   |                           |                   |                                     |                                 |                 |                                            |
| How can seemingly non-random patterns be a                                                                                  | result of a random pro    | cess?             |                                     |                                 |                 |                                            |
|                                                                                                                             |                           |                   |                                     |                                 |                 |                                            |
| Random Process                                                                                                              |                           |                   |                                     |                                 |                 |                                            |
| Randomness shows up in our                                                                                                  |                           |                   |                                     | vhat w                          | /e              |                                            |
| at, what we see on V                                                                                                        | /hat is a random proce    | ess??             |                                     |                                 |                 |                                            |
| Random Process                                                                                                              |                           |                   |                                     |                                 |                 |                                            |
| In each of these cases, we are                                                                                              | of the possible outcon    | nes, bu           | ut have                             | e                               |                 |                                            |
| what the outcome will be.                                                                                                   |                           |                   |                                     |                                 |                 |                                            |
|                                                                                                                             |                           |                   |                                     |                                 |                 |                                            |
| This is called a                                                                                                            |                           |                   |                                     |                                 |                 |                                            |
|                                                                                                                             |                           |                   |                                     |                                 |                 |                                            |
| Even though outcomes are                                                                                                    | e uncertain, there is a s | sense (           | of                                  |                                 |                 |                                            |
| that occurs in the                                                                                                          |                           |                   |                                     |                                 |                 |                                            |
| Give It a Chance!                                                                                                           |                           |                   |                                     |                                 |                 |                                            |
| Write down a sequence of 100 flips that you thi                                                                             | nk could come from a      | fair co           | oin. (Do                            | o not a                         | actually        | / flip                                     |
| the coin.) (Record your sequence below.)                                                                                    |                           |                   |                                     | 0 1100                          | actually        | mΡ                                         |
|                                                                                                                             |                           |                   |                                     |                                 |                 |                                            |
|                                                                                                                             |                           |                   |                                     |                                 |                 |                                            |
|                                                                                                                             |                           |                   |                                     |                                 |                 |                                            |
|                                                                                                                             |                           |                   |                                     |                                 |                 |                                            |
|                                                                                                                             |                           |                   |                                     |                                 |                 |                                            |
|                                                                                                                             |                           |                   |                                     |                                 |                 |                                            |
| How many heads did your "coin" result in?                                                                                   | How many <sup>.</sup>     | tails? _          |                                     |                                 | -               |                                            |
|                                                                                                                             |                           |                   |                                     |                                 |                 |                                            |
| What is the longest streak of heads or tails reco                                                                           | rded by your "coin"?      |                   |                                     |                                 |                 |                                            |
| Give It a Chance!                                                                                                           |                           |                   |                                     |                                 |                 |                                            |
|                                                                                                                             |                           |                   |                                     |                                 |                 |                                            |
|                                                                                                                             |                           |                   |                                     |                                 |                 | т                                          |
| I flipped an actual coin 100 times and got the f                                                                            | ollowing sequence         | T<br>H            | T<br>T                              | T<br>T                          | T<br>T          | Ŧ                                          |
| I flipped an actual coin 100 times and got the for of heads and tails.                                                      | ollowing sequence         | T<br>H<br>H       | T<br>T<br>H                         | T<br>T<br>H                     | T<br>T          | н                                          |
|                                                                                                                             | ollowing sequence         | T<br>H            | T<br>T                              | T<br>T                          | T<br>T          |                                            |
| of heads and tails.                                                                                                         |                           | T<br>H<br>H       | ТТННТН                              | T T H T H T                     | T<br>T          | н                                          |
|                                                                                                                             |                           | T<br>H<br>H       | ТТННТНН                             | ТН                              | T<br>T          | н                                          |
| of heads and tails.                                                                                                         |                           | T<br>H<br>H       | ТТННТН                              | T T H T H T                     | T<br>T          | н                                          |
| of heads and tails.                                                                                                         |                           | T<br>H<br>H       | ТТННТННТ                            | ТТНТНТНТТН                      | ТТТТНТ          | н                                          |
| of heads and tails.                                                                                                         |                           | T<br>H<br>H       | Т Т Н Н Т Н Н Т Н Т Н               | ТТНТНТНТТ                       | T<br>T          | -<br>+ + + + + + + + + + + + + + + + + + + |
| of heads and tails.                                                                                                         | d is unfair?              | T<br>H<br>H       | ТТННТННТ                            | ТТНТНТНТТН                      | ТТТТНТ          | -<br>+ + + + + + + + + + + + + + + + + + + |
| of heads and tails.<br>Is there indication that the coin/flipping method                                                    | d is unfair?              | T<br>H<br>H       | Т Т Н Н Т Н Н Т Н Т Н Н Н           | T T H T H T H T H T H T T       | ТТТТТНТНТТ      |                                            |
| of heads and tails.<br>Is there indication that the coin/flipping method                                                    | d is unfair?              | T<br>H<br>H       | Т Т Н Н Т Н Н Т Н Т Н Н Н Н         | T T H T H T H T H T H T H       | ТТТТТНТНТТННТ   |                                            |
| of heads and tails.<br>Is there indication that the coin/flipping method<br>Do you notice any patterns in the sequence flip | d is unfair?<br>s?        | T<br>H<br>H       | Т Т Н Н Т Н Н Т Н Т Н Н Н           | T T H T H T H T H T H T H T H T | ТТТТТНТНТТ      |                                            |
| of heads and tails.<br>Is there indication that the coin/flipping method                                                    | d is unfair?<br>s?        | T<br>H<br>H       | Т Т Н Н Т Н Н Н Т Н Т Н Н Н Н Т Т Т | TTHTHTHTHTHTHTHH                | ттттнтнттннтн   |                                            |
| of heads and tails.<br>Is there indication that the coin/flipping method<br>Do you notice any patterns in the sequence flip | d is unfair?<br>s?        | тнннннтннтнннттнт | Т Т Н Н Т Н Н Т Н Т Н Н Н Т Т Т Н   | ттнтнтнтнтнтнтн                 | ттттнтнттннтнтн |                                            |
| of heads and tails.<br>Is there indication that the coin/flipping method<br>Do you notice any patterns in the sequence flip | d is unfair?<br>s?        | T<br>H<br>H       | Т Т Н Н Т Н Н Н Т Н Т Н Н Н Н Т Т Т | TTHTHTHTHTHTHTHH                | ттттнтнттннтн   |                                            |

🕂 STATS MEDIC

|                                                                 | Name_      |         |          |          |            |
|-----------------------------------------------------------------|------------|---------|----------|----------|------------|
| Give It a Chance!                                               |            |         |          |          |            |
| The first five flips were all tails. Is this indication of non- | т          | т       | т        | т        | т          |
| random activity? Is this indication that the next flip was      | н          | т       | т        | т        | т          |
| DUE to be a heads?                                              |            |         |          | - C.     |            |
|                                                                 |            |         |          |          |            |
| Give It a Chance!                                               | _          | -       | _        | _        | _          |
|                                                                 | т          | Ŧ       | T        | Ţ        | Ţ          |
| The longest streak that occurred was:                           | Ĥ          | ÷.      | ά.       | ÷        | н.         |
|                                                                 | Ĥ          | Ĥ.      | 7        | ÷        | Ĥ          |
|                                                                 | Ĥ          | ÷       | Ĥ.       | ÷        | Ĥ          |
|                                                                 | Ĥ.         | Ĥ.      | Ť        | Ĥ.       | Ĥ I        |
|                                                                 | Ĥ          | H       | Ĥ.       | Ť        | Ť          |
|                                                                 | т          | т       | т        | н        | H          |
| How likely is it to get a string of 8 heads or 8 tails          | н          | н       | т        | т        | H          |
| withing a set of 100 rolls?                                     | н          | т       | н        | т        | H          |
|                                                                 | т          | н       | т        | т        | Т          |
|                                                                 | н          | т       | н        | н        | т          |
|                                                                 | н          | н       | т        | н        | н          |
| llow truly "readers" was your out of readers flips? What        | н          | н       | т        | т        | Н          |
| How truly "random" was your set of random flips? What           | н          | н       | н        | H        |            |
| was your longest run?                                           | <u> </u>   | T       | T        | T        | T          |
|                                                                 | Ţ          | Ţ       | н        | н        | Ţ          |
| Should we be surprised by the streak of 8?                      | . <u>H</u> | - A     | H        | H        | - <u>1</u> |
|                                                                 | Ŧ          | H<br>T  | H        | H        | Ĥ          |
|                                                                 |            |         | 1.1      | 1.1      | •          |
| What Should We Take Away?                                       |            |         |          |          |            |
| A is a situation where all pos                                  | sible outc | omes th | at can o | ccur are | known,     |
| but outcome are unknown.                                        |            |         |          |          |            |
|                                                                 |            |         |          |          |            |
| Patterns of random occurrences may include                      | or         |         | ofor     | Itcomes  | that       |
|                                                                 | 0          |         | 0100     |          | lial       |
| appear to be                                                    |            |         |          |          |            |
|                                                                 |            |         |          |          |            |



Name\_\_\_

### AP Statistics CED 4.2 Daily Video 1 (Skill 3.A)

Estimating Probabilities Using Simulation

| What Will We Learn?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                       |                       |                     |                     |                        |                       |                                      |                                                                                                   |                     |                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------|-----------------------|---------------------|---------------------|------------------------|-----------------------|--------------------------------------|---------------------------------------------------------------------------------------------------|---------------------|-------------------------------------------|
| What is a random process?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                       |                       |                     |                     |                        |                       |                                      |                                                                                                   |                     |                                           |
| Why is simulation effective in modeling real-life chance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | situa        | ation                 | s?                    |                     |                     |                        |                       |                                      |                                                                                                   |                     |                                           |
| Random Events and Outcomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                       |                       |                     |                     |                        |                       |                                      |                                                                                                   |                     |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                       |                       |                     |                     |                        |                       |                                      |                                                                                                   |                     |                                           |
| -A generates results that are o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                       | e by                  |                     |                     |                        |                       |                                      | _·                                                                                                |                     |                                           |
| Example:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                       |                       |                     |                     |                        |                       |                                      |                                                                                                   |                     |                                           |
| -An is the result of a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |                       |                       |                     |                     |                        |                       |                                      |                                                                                                   |                     |                                           |
| Example:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                       |                       |                     |                     |                        |                       |                                      |                                                                                                   |                     |                                           |
| -An is a collection of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |                       |                       | _•                  |                     |                        |                       |                                      |                                                                                                   |                     |                                           |
| Example:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                       |                       | _                   |                     |                        |                       |                                      |                                                                                                   |                     |                                           |
| Give It a Chance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | т            |                       |                       |                     |                     |                        |                       | т                                    | т                                                                                                 | т                   | т                                         |
| A coin was flipped 100 times and got the following                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H            | H<br>T                | H                     | Ţ                   | H                   | H                      |                       | H<br>H                               | Ţ                                                                                                 | Т                   | H                                         |
| sequence of heads and tails.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ΞĤ.          | -                     | Ĥ                     |                     | Ť                   |                        |                       |                                      | ÷.                                                                                                |                     | Ĥ.                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | H                     | Ţ                     | Ţ                   | H                   | H                      |                       | Ţ                                    | H                                                                                                 | T                   | H                                         |
| How likely is it to get a string of 8 (or more) heads or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | T<br>H       | н                     | т                     | H H                 | T<br>H              | н                      |                       | н                                    | H<br>T                                                                                            | т                   | T<br>H                                    |
| 8 (or more) tails within a set of 100 flips?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | H            | H                     | Ĥ                     | Ĥ                   | Ť                   | Ť                      |                       | т                                    | Ť                                                                                                 | Ť                   | Ť                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ţ            | - <u>T</u>            | H                     | - 8                 | T<br>T<br>H         | 부                      |                       | Ţ                                    | ÷.                                                                                                | ÷.                  | н                                         |
| Random Process: Flipping a coin times                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1            |                       |                       |                     |                     |                        |                       | <u>ار ا</u>                          | 1                                                                                                 | 1                   | п                                         |
| Possible Outcomes: The sequence to the right is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SU           | ch (r                 | าดรร                  | ible)               | exar                | nole                   | 2                     |                                      |                                                                                                   |                     |                                           |
| Event: String of or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0            | ο γ                   |                       |                     | 0,101               |                        |                       |                                      |                                                                                                   |                     |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                       |                       |                     |                     |                        |                       |                                      |                                                                                                   |                     |                                           |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                       |                       |                     |                     |                        |                       |                                      |                                                                                                   |                     |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | of ae        | ttinc                 | a stri                | ina c               | of 8+               | hea                    | ds                    | or ta                                | ails.                                                                                             |                     |                                           |
| According to our example, there is a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                       |                       |                     | of 8+               | hea                    | ds                    | or ta                                | ails.                                                                                             |                     |                                           |
| According to our example, there is a o<br>-This is because we preformed one                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                       |                       | ·                   |                     |                        |                       |                                      |                                                                                                   | ando                | m                                         |
| According to our example, there is a of -This is because we preformed one<br>Instead, we need to perform trials, du                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                       |                       | ·                   |                     |                        |                       |                                      |                                                                                                   | ando                | m                                         |
| According to our example, there is a of<br>-This is because we preformed one<br>Instead, we need to perform trials, du<br>process (each set of 100 flips is still random).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                       |                       | ·                   |                     |                        |                       |                                      |                                                                                                   | ando                | m                                         |
| According to our example, there is a of -This is because we preformed one<br>Instead, we need to perform trials, du process (each set of 100 flips is still random).<br>Give It (Another) Chance!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                       |                       |                     |                     |                        | i                     | in th                                | ne ra                                                                                             |                     |                                           |
| According to our example, there is a<br>-This is because we preformed one<br>Instead, we need to perform trials, du<br>process (each set of 100 flips is still random).<br>Give It (Another) Chance!<br>After flipping the coin another 100 times, we get the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | TTH                   | TTT                   | H<br>T<br>T         | НТН                 | HTH                    | нн                    | in th                                | he ra                                                                                             | H<br>T<br>H         |                                           |
| According to our example, there is a of -This is because we preformed one<br>Instead, we need to perform trials, du process (each set of 100 flips is still random).<br>Give It (Another) Chance!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | T<br>T<br>H<br>H      | TTT                   | H<br>T<br>T         |                     | HTH                    | НННТ                  | in th                                | he ra                                                                                             | H<br>T<br>H<br>T    |                                           |
| According to our example, there is a or<br>-This is because we preformed one<br>Instead, we need to perform trials, du<br>process (each set of 100 flips is still random).<br>Give It (Another) Chance!<br>After flipping the coin another 100 times, we get the<br>following:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e to         | ТТНН                  | T<br>T<br>T<br>T<br>T | H T T H T T         | НТН                 | HTHTT                  | HHHTHT                | in th                                | he ra                                                                                             | H<br>T<br>H         | T T H T T H                               |
| According to our example, there is a or preformed one preformed one Instead, we need to perform trials, due process (each set of 100 flips is still random).<br><b>Give It (Another) Chance!</b><br>After flipping the coin another 100 times, we get the following:<br>Take minute to look for a string of 8 heads or 8 tails in the following is the following is a string of 8 heads or 8 tails in the following is a string of 8 heads or 8 tails in the following is a string of 8 heads or 8 tails in the following is a string of 8 heads or 8 tails in the following is a string of 8 heads or 8 tails in the following is a string of 8 heads or 8 tails in the following is a string of 8 heads or 8 tails in the following is a string of 8 heads or 8 tails in the following is a string of 8 heads or 8 tails in the following is a string of 8 heads or 8 tails in the following is a string of 8 heads or 8 tails in the following is a string of 8 heads or 8 tails in the following is a string of 8 heads or 8 tails in the following is a string of 8 heads or 8 tails in the following is a string of 8 heads or 8 tails in the following is a string of 8 heads or 8 tails in the following is a string of 8 heads or 8 tails in the following is a string of 8 heads or 8 tails in the following is a string of 8 heads or 8 tails in the following is a string of 8 heads or 8 tails in the following is a string of 8 heads or 8 tails in the following is a string of 8 heads or 8 tails in the following is a string of 8 heads or 8 tails in the following is a string of 8 heads or 8 tails in the following is a string of 8 heads or 8 tails in the following is a string of 8 heads or 8 tails in the following is a string of 8 heads or 8 tails in the following is a string of 8 heads or 8 tails in the following is a string of 8 heads or 8 tails in the following is a string of 8 heads or 8 tails in the following is a string of 8 heads or 8 tails in the following is a string of 8 heads or 8 tails in the following is a string of 8 heads or 8 t | e to         | ТТНННТТ               | ТТТТТН                | Н Т Т Н Т Т Т       | НТНННТТ             | НТНТТН                 | HHHTHTT               | in th<br>H<br>H<br>T<br>T<br>T       | H<br>H<br>H<br>T<br>H<br>T                                                                        | НТНТННТ             | T T H T T H T                             |
| According to our example, there is a or<br>-This is because we preformed one<br>Instead, we need to perform trials, du<br>process (each set of 100 flips is still random).<br>Give It (Another) Chance!<br>After flipping the coin another 100 times, we get the<br>following:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e to         | ТТНННТ                | ТТТТНТ                | Н Т Т Н Т Т Т       | НТНННТТТ            | HTHTTHTT               | нннтнттнн             | H<br>H<br>T<br>T<br>T<br>T<br>H<br>T | H<br>H<br>H<br>T<br>H<br>T<br>H<br>T                                                              | НТНТННТТ            | ТТНТТН                                    |
| According to our example, there is a or -This is because we preformed one Instead, we need to perform trials, due process (each set of 100 flips is still random).<br><b>Give It (Another) Chance!</b><br>After flipping the coin another 100 times, we get the following:<br>Take minute to look for a string of 8 heads or 8 tails in the trial and circle if you find one.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e to         | ТТНННТТН              | ТТТТТНТ               | НТТНТТТ             | НТНННТТТ            | HTHTTHT                | НННТНТТН              | H<br>H<br>T<br>T<br>T<br>H           | H<br>H<br>H<br>T<br>H<br>T<br>H<br>T<br>H                                                         | НТНТННТТ            | Т Т Н Т Н<br>Н Т Н Н Т Н<br>Н             |
| According to our example, there is a or<br>-This is because we preformed one<br>Instead, we need to perform trials, due process (each set of 100 flips is still random).<br><b>Give It (Another) Chance!</b><br>After flipping the coin another 100 times, we get the following:<br>Take minute to look for a string of 8 heads or 8 tails in the trial and circle if you find one.<br>So, 2 out of 2 successes =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e to         | ТТНННТ                | ТТТТНТ                | НТТНТТТ             | НТНННТТТ            | HTHTTHTT               | нннтнттнн             | H<br>H<br>T<br>T<br>T<br>T<br>H<br>T | H<br>H<br>H<br>T<br>H<br>T<br>H<br>T                                                              | НТНТННТТ            | ТТНТТН                                    |
| According to our example, there is a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e to         | ТТНННТТНТТ            | ТТТТТНТТ              | НТТНТТТТН           | НТНННТТТТ           | НТНТТТНТТТ             | НННТНТТННТ            | H H T T T T H T H H                  | H H T H T H H T H H T H H T H H T H H T H H T H H T H H T H H H H H H H H H H H H H H H H H H H H | НТНТННТТН           | T<br>H<br>T<br>H<br>H<br>H<br>H<br>H<br>H |
| According to our example, there is a or or preformed one Instead, we need to perform trials, due process (each set of 100 flips is still random).<br><b>Give It (Another) Chance!</b><br>After flipping the coin another 100 times, we get the following:<br>Take minute to look for a string of 8 heads or 8 tails in the trial and circle if you find one.<br>So, 2 out of 2 successes =<br><b>Give it (Another) Chance!</b><br>After flipping the coin yet another 100 times, we get the following:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e to         | ТТ Н Н Н ТТ Н ТТ Н ТТ | ТТТТТНТТ              | нттнттттн<br>нт     | НТНННТТТТ           | НТНТТТНТТТ             | НННТНТТННТ            | H H T T T T H T H H H H H            | H<br>H<br>H<br>H<br>T<br>H<br>T<br>H<br>H<br>H<br>H<br>H                                          | нтнтннтттн нт       | Т Т Н Т Т Н Т Н Н Н Н                     |
| According to our example, there is a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e to         | ттнннттнтт нтнн       | ТТТТТНТТТ ННТТ        | нттнттттн нтнт      | нтнннтттт ннтт      | HTHTTTHTTT             | нннтнттннт нннт       | in th<br>HHTTTTTH<br>HHHHHHH         | H H H T H H H H H H H H H H H H H H                                                               | нт нт н нт тт н     | ттнттнтннн ннтн                           |
| According to our example, there is a or or preformed one Instead, we need to perform trials, due process (each set of 100 flips is still random).<br><b>Give It (Another) Chance!</b><br>After flipping the coin another 100 times, we get the following:<br>Take minute to look for a string of 8 heads or 8 tails in the trial and circle if you find one.<br>So, 2 out of 2 successes =<br><b>Give it (Another) Chance!</b><br>After flipping the coin yet another 100 times, we get the following:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e to         | ттнннттнтт нтннн      | ТТТТТТНТТТ ННТТТ      | нттнттттн нтнтн     | нтнннтттт ннттт     | нтнтттнттт тнтнн       | нннтнттннт нннтн      | in th<br>HHTTTTTH<br>HHHHHHHH        | H H H T H T H H H H T H T H T H T H T H                                                           | нтнтннтттн нтйнт    | Т Т Н Т Т Н Т Н Н Н Н Н Т Н Т             |
| According to our example, there is a or or preformed one Instead, we need to perform trials, due process (each set of 100 flips is still random).<br><b>Give It (Another) Chance!</b><br>After flipping the coin another 100 times, we get the following:<br>Take minute to look for a string of 8 heads or 8 tails in the trial and circle if you find one.<br>So, 2 out of 2 successes =<br><b>Give it (Another) Chance!</b><br>After flipping the coin yet another 100 times, we get the following:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e to         | ттнннттнтт нтнннн     | ТТТТТТНТТТ ННТТТНТ    |                     | нтнннттттт ннттттн  | нтнтттнттт тнтнннт     | нннтнттннт нннтнтн    | in th<br>HHTTTTHTH<br>HHHHHHHHHH     | H H T H T H T H T H T H T H T H T H T H                                                           | нтнтннтттн нтүнттн  | Т Т Н Т Т Н Т Н Н Н Н Н Т Н Т Н Т         |
| According to our example, there is a or preformed one Instead, we need to perform trials, due process (each set of 100 flips is still random).<br><b>Give It (Another) Chance!</b><br>After flipping the coin another 100 times, we get the following:<br>Take minute to look for a string of 8 heads or 8 tails in the trial and circle if you find one.<br>So, 2 out of 2 successes =<br><b>Give it (Another) Chance!</b><br>After flipping the coin yet another 100 times, we get the following:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e to         | ТТНННТТНТТ НТННННТ    | ТТТТТТНТТТ ННТТТНТТ   | нттнттттн нтнтнтнн  | нтнннттттт ннттттнн | HTHTTTHTTT THTHHHTT    | нннтнттннт нннтнтнн   | in th                                | H H T H T H T H T H T H T H T T T T                                                               | нтнтннтттн нтйнттнн | ттнттнтннн ннтнтнтт                       |
| According to our example, there is a or preformed one Instead, we need to perform trials, due process (each set of 100 flips is still random).<br><b>Give It (Another) Chance!</b><br>After flipping the coin another 100 times, we get the following:<br>Take minute to look for a string of 8 heads or 8 tails in the trial and circle if you find one.<br>So, 2 out of 2 successes =<br><b>Give it (Another) Chance!</b><br>After flipping the coin yet another 100 times, we get the following:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e to<br>this | ТТНННТТНТТ НТНННННТТТ | ТТТТТТНТТТ ННТТТНТТТН | нттнттттн нтнтнтннт | нтнннтттт ннтттннн  | HTHTTTHTTT THTHHHHTTTT | нннтнттннт нннтнтннтн | in th<br>HHTTTTHTH<br>HHHHHHHHHH     | H H T H T H T H T H T H T H T H T H T H                                                           | нтнтннтттн нтүнттн  | Т Т Н Т Т Н Т Н Н Н Н Н Т Н Т Н Т         |

+ STATS MEDIC

|                                                                               | Name                                                            |
|-------------------------------------------------------------------------------|-----------------------------------------------------------------|
| Give It (Another) Chance!                                                     |                                                                 |
| This is a of flipping coins! There mu                                         | st be an easier way! Is there something else that can work      |
| similarly to the flip of a coin that saves time                               | and energy?                                                     |
|                                                                               |                                                                 |
|                                                                               | , such that the simulated                                       |
| outcomes closely match the                                                    | outcomes.                                                       |
| Give It a Chance!                                                             |                                                                 |
| How likely is it to get a string of 8 (or more)                               | heads or 8 (or more) tails within a set of 100 flips?           |
| Here are the results from a computer simulation of 50 sets of 100 coin flips. | 5 6 7 8 9 10<br>Longest Streak in 100 coin flips                |
| Ci                                                                            | rcle the portion of the graph that shows a streak of 8 or more. |
|                                                                               |                                                                 |
|                                                                               |                                                                 |
|                                                                               | , which are the results of a                                    |
| of a random process.                                                          |                                                                 |
| is a way to<br>outcomes closely match the                                     | a random process, so that the simulated<br>outcome.             |



Name\_\_\_

### AP Statistics CED 4.2 Daily Video 2 (Skill 3.A)

Inference and Experiments

|     | hat Will                                                          |           |                |             |                  |            |               |           |                    |                     |              |   |
|-----|-------------------------------------------------------------------|-----------|----------------|-------------|------------------|------------|---------------|-----------|--------------------|---------------------|--------------|---|
| W   | hat is th                                                         | e law     | or large n     | umbers?     |                  |            |               |           |                    |                     |              |   |
| Ho  | w can s                                                           | simula    | tion be us     | ed to estir | mate prob        | abilities? |               |           |                    |                     |              |   |
| La  | w of La                                                           | rge Ni    | umbers         |             |                  |            |               |           |                    |                     |              |   |
|     | probabilities seem to get closer to the probability as the number |           |                |             |                  |            |               |           |                    |                     |              |   |
| of  | of trials                                                         |           |                |             |                  |            |               |           |                    |                     |              |   |
|     | ННТНННТТНТ (6/10)                                                 |           |                |             |                  |            |               |           |                    |                     |              |   |
| Ex  | Example: "Fair" coin? THTHTHHHTH (12/20)                          |           |                |             |                  |            |               |           |                    |                     |              |   |
|     | ТННННННН (20/30)<br>НННННННТН (29/40)                             |           |                |             |                  |            |               |           |                    |                     |              |   |
|     |                                                                   |           |                |             |                  |            |               |           |                    |                     |              |   |
|     |                                                                   |           |                |             |                  |            | нтнн          | nn        | (38/               | 50)                 |              |   |
|     | Trial                                                             | 1         | 2              | 3           | 4                | 5          | 6             | 7         | 8                  | 9                   | 10           |   |
| n i | Prop.                                                             |           | 2/2 =          | 2/3 =       | 3/4 =            |            |               |           | 5/8 =              | 6/9 =               | 6/10 =       |   |
|     | Heads                                                             | 100%      | 100%           | 66.7%       | 75%              | 80%        | 83.3%         | 71.4%     | 67.5%              | 66.7%               | 60%          |   |
|     | Tria                                                              | I         | 20             | 30          | 40               | 50         | 100           |           | 500                | 1000                |              |   |
|     |                                                                   | o.<br>Ids | 12/20 =<br>60% |             | 29/40 =<br>72.5% |            | = 79/1<br>79% |           | 391/500 =<br>78.2% | 806/1000 =<br>80.6% |              |   |
| _   |                                                                   |           |                |             |                  |            |               |           |                    |                     |              |   |
|     |                                                                   |           |                |             |                  |            |               |           |                    |                     | o theoretica | I |
| •   |                                                                   |           |                |             |                  |            |               | •         | bability clo       |                     |              |   |
|     |                                                                   |           |                |             |                  |            |               |           | fair! I            |                     |              |   |
|     |                                                                   |           |                | , the       | variability      | from the   | <u> </u>      | P         | probability        | is                  | ·            |   |
|     |                                                                   | -         | imulation      |             |                  |            |               |           |                    |                     |              |   |
| Us  | e a                                                               |           | device         | to imitate  | e the            |            | proces        | ss:       | / -                |                     |              |   |
|     | ina a ra                                                          | ,<br>ndom | number g       | anorator.   |                  | /          |               |           |                    |                     | /            |   |
|     | -                                                                 |           |                |             |                  | mitato th  | 2             | ()        | nat digits r       | oproconti           | which        |   |
|     |                                                                   |           | determin       |             |                  |            |               |           |                    | epiesent            | WITCH        |   |
|     |                                                                   |           |                |             |                  |            | II            | omea      | ach thai.          |                     |              |   |
|     |                                                                   |           |                |             |                  |            |               | ب دا د اب |                    |                     | : I :        |   |
|     | alculate                                                          |           |                |             |                  | OT SI      | JCCESSTUI     | trials    | to get a sir       | nulated pi          | obability.   |   |
|     | arpsho                                                            |           |                | н. •        | 1                |            | c             |           |                    |                     |              |   |
|     |                                                                   |           |                |             |                  |            |               |           | shooter, n         | •                   |              |   |
|     |                                                                   |           | •              |             |                  | •          | •             |           |                    |                     | shots until  |   |
|     | -                                                                 |           | •              |             |                  |            |               |           | consecutiv         | ve shots. E         | Design a     |   |
| sir | nulatior                                                          | i to de   | etermine t     | ne likeliho | od of the        | record be  | eing brok     | en.       |                    |                     |              |   |
|     |                                                                   |           |                |             |                  |            |               |           |                    |                     |              |   |
| *Α  | ssign d                                                           | igits to  | o represer     | t outcome   | es: Numbe        | ers        | _: Made s     | shots;    | Numbers _          | : mi                | ssed shots   |   |
| Us  | e a rano                                                          | dom n     | umber ge       | nerator to  | obtain a i       | number k   | etween _      |           | Co                 | ntinue to s         | select       |   |
| nu  | mbers                                                             | until a   | shot is        |             | Because          | e each nu  | ımber rep     | oresen    | its the            |                     | of a         |   |
| sh  | ot,                                                               |           |                |             | Count            | the numb   | er of         |           | sho                | ts. Repeat          | t this for   |   |
| se  | veral                                                             |           | and            | calculate   | the              |            | of tr         | ials wł   | nere at lea        | st                  |              |   |
|     |                                                                   |           | ts were m      |             |                  |            |               |           |                    |                     |              |   |
|     |                                                                   |           |                |             |                  |            |               |           |                    |                     |              |   |



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Name                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Table of Random Digits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                 |
| To use a table of random digits, we must assign                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | to represent the shots:                                                                                                         |
| Numbers: made shot and Numbers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | missed shot                                                                                                                     |
| We then select at a time, moving                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | on a row in the table of                                                                                                        |
| random digits. Because each number represents an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                 |
| acceptable. We continue to select                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                 |
| Count the number of shots. Repea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | at for several, and calculate the                                                                                               |
| of trials with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | consecutive shots made.                                                                                                         |
| Trial 1:       26       63       87       2 shots         Trial 2:       15       91       1 shot         Trial 3:       38       96       1 shot         Trial 4:       73       71       62       10       87       4 shots         Trial 5:       28       38       8       65       86       4 shots         Trial 6:       5       8       8       12       54       61       70       74         41       61       63       64       42       38       90       14 shots         Trial 7:       35       18       23       35       24       29       97       6 shots         Trial 8:       68       60       86       3 shots       3 shots       3 shots | Our of the trials, resulted in a streak of or made shots. The estimated probability of the shooter breaking the record would be |
| This is just our set of trials. If we were                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | to do of 200 trials, then we                                                                                                    |
| should to get a different set of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ·                                                                                                                               |
| How can we determine the probability of an event                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | without doing a simulation???? Stay tuned!!!!                                                                                   |
| What Should We Take Away?         As the of trials of a random process         closer to the probability. The is called a random process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                 |
| involves using a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | device to perform trials of a                                                                                                   |
| random process. The of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                 |
| of its probability.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                 |



### AP Statistics CED 4.3 Daily Video 1 (Skill 3.A)

Introduction to Probability

| What Will We Learn?                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------|
| How can we calculate the probability of events involving equally likely outcome?                                                     |
| How can we interpret the probability of an event?                                                                                    |
| Sample Spaces                                                                                                                        |
| For a random process theis the collections of outcomes.                                                                              |
| The letter is often used to represent sample space.                                                                                  |
| Example: Flip a single coin. S =                                                                                                     |
| <u>Example:</u> Roll a die (number cube). S =                                                                                        |
| Sample Spaces                                                                                                                        |
| Example: Flip two coins. Record the sequence of heads or tails. S =                                                                  |
| Example: Randomly select a vowel from the English alphabet. S =                                                                      |
| Example: Roll two dice. S =                                                                                                          |
| Probability for Equally Likely Outcomes                                                                                              |
| Event of outcomes for the process. Events are usually denoted                                                                        |
| with a capital letter, like A, B, etc.                                                                                               |
| total number of outcomes in event A                                                                                                  |
| Probability of an event: $P(A) = \frac{\text{total number of outcomes in event A}}{\text{total number of outcomes in sample space}}$ |
|                                                                                                                                      |
| A probability will always be a number between, inclusive.                                                                            |
| *A probability of means the event is                                                                                                 |
| *A probability of means it is a (it will always occur).                                                                              |
|                                                                                                                                      |
| Listen Up! • 327 rock & roll albums                                                                                                  |
| The owner of a local record store is interested in what types of music • 431 jazz albums                                             |
| people are buying. He has kept record of the genre of vinyl albums • 192 classical albums                                            |
| sold over the past year The following number of albums were sold • 790 hip-hop albums                                                |
| according to genre.<br>• 276 world music albums<br>• 89 pop albums                                                                   |
|                                                                                                                                      |
| Listen Up!                                                                                                                           |
| Random process: Randomly select an                                                                                                   |
| Outcome:                                                                                                                             |
| Sample Space: the entire set of albums sold: S = =                                                                                   |
| Event A =                                                                                                                            |
| total number of jazz albums sold                                                                                                     |
| $P(Jazz) = \frac{\text{total number of jazz albums sold}}{\text{total number of albums sold}} = \underline{\qquad}$                  |
|                                                                                                                                      |
| Interpreting Probability                                                                                                             |
| Probability of events in repeatable situations can be interpreted as the                                                             |
| frequency with which the event will occur in the P(Jazz) =                                                                           |
| If we were to                                                                                                                        |
| the frequency of jazz albums selected would be approximately                                                                         |
|                                                                                                                                      |



|                                                                                                                                                            |                        |                                       | Nar                                                  | ne                           |                     |                     |                     |                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------------------|------------------------------------------------------|------------------------------|---------------------|---------------------|---------------------|--------------------|
| Listen Up!                                                                                                                                                 |                        |                                       |                                                      |                              |                     |                     |                     |                    |
| One way to organize the                                                                                                                                    | Genre                  | Rock &<br>Roll                        | Jazz                                                 | Classical                    | Hip-Ho              | op Wo               | orld                | Рор                |
| information is by using a table that<br>lists event and corresponding                                                                                      | Probability            | 327/2105<br>= 0.155                   | 431/2105<br>= 0.205                                  | 192/2105<br>= 0.091          | 790/21              |                     | 6/2105<br>0.131     | 89/2105<br>= 0.042 |
| probabilities.                                                                                                                                             |                        |                                       |                                                      |                              |                     |                     |                     |                    |
|                                                                                                                                                            | da thau a              | and to 2                              |                                                      |                              | \ \ /               | امع مام             | ما الما الم         |                    |
| Add up all of the probabilities. What                                                                                                                      | -                      |                                       |                                                      |                              | ٧٧                  | nat she             | Suid in             | ey equai           |
| to? Is this a valid                                                                                                                                        | ргорарш                | ty distribu                           | luon                                                 |                              |                     |                     |                     |                    |
| If we add the decimals, we get                                                                                                                             | This                   | s is becau                            | ise of                                               |                              |                     | , bı                | ıt it               | а                  |
| valid probability distribution because                                                                                                                     |                        |                                       |                                                      |                              |                     |                     |                     |                    |
| Complements                                                                                                                                                |                        |                                       | •                                                    |                              |                     |                     |                     |                    |
| The complement of an event A is the                                                                                                                        | event th               | at A                                  |                                                      |                              |                     |                     |                     |                    |
| The complement of A is denoted by                                                                                                                          |                        |                                       |                                                      | ·                            |                     |                     |                     |                    |
| The probability of the complement o                                                                                                                        | f A is equ             | al to                                 |                                                      |                              |                     | <b>P</b> (          | ( <b>A'</b> ) = '   | 1 – P(A)           |
|                                                                                                                                                            |                        |                                       |                                                      | Jazz                         | Classical           | Hin-Hon             | World               | Рор                |
| Listen Up!                                                                                                                                                 |                        | Genre                                 | Rock &                                               | Jazz                         | onaconcar           | inp-nop             | wond                | Fop                |
| ·                                                                                                                                                          |                        |                                       | Rock &<br>Roll<br>ty 327/2105                        |                              | 192/2105            | 790/2105            |                     |                    |
| Listen Up!<br>P(not Jazz) =                                                                                                                                |                        |                                       | Roll                                                 | 431/2105                     |                     |                     |                     |                    |
| ·                                                                                                                                                          |                        |                                       | Roll<br>ty 327/2105                                  | 431/2105                     | 192/2105            | 790/2105            | 276/2105            | 89/2105            |
| P(not Jazz) =<br>=<br>=                                                                                                                                    |                        |                                       | Roll<br>ty 327/2105                                  | 431/2105                     | 192/2105            | 790/2105            | 276/2105            | 89/2105            |
| P(not Jazz) =<br>=<br>=<br>What Should We Take Away?                                                                                                       |                        | Probabili                             | Roll           ty         327/2105           = 0.155 | 431/2105<br>= 0.205          | 192/2105<br>= 0.091 | 790/2105<br>= 0.375 | 276/2105<br>= 0.131 | 89/2105<br>= 0.042 |
| P(not Jazz) =<br>=<br>What Should We Take Away?<br>The probability of an event involving                                                                   |                        | Probabili                             | Roll           327/2105           = 0.155            | 431/2105<br>= 0.205          | 192/2105<br>= 0.091 | 790/2105<br>= 0.375 | 276/2105<br>= 0.131 | 89/2105<br>= 0.042 |
| P(not Jazz) =<br>=<br>=<br>What Should We Take Away?                                                                                                       |                        | Probabili                             | Roll           327/2105           = 0.155            | 431/2105<br>= 0.205          | 192/2105<br>= 0.091 | 790/2105<br>= 0.375 | 276/2105<br>= 0.131 | 89/2105<br>= 0.042 |
| P(not Jazz) =<br>=<br>What Should We Take Away?<br>The probability of an event involving<br>for a certain event d                                          | ivided by              | Probabili<br>ikely outo<br>the        | Roll           327/2105           = 0.155            | 431/2105<br>= 0.205          | 192/2105<br>= 0.091 | 790/2105<br>= 0.375 | 276/2105<br>= 0.131 | 89/2105<br>= 0.042 |
| P(not Jazz) =<br>=<br>What Should We Take Away?<br>The probability of an event involving                                                                   | ivided by              | Probabili<br>ikely outo<br>the        | Roll           327/2105           = 0.155            | 431/2105<br>= 0.205          | 192/2105<br>= 0.091 | 790/2105<br>= 0.375 | 276/2105<br>= 0.131 | 89/2105<br>= 0.042 |
| P(not Jazz) =<br>=<br>What Should We Take Away?<br>The probability of an event involving<br>for a certain event d<br>The probability of an event is a numb | ivided by<br>per betwe | Probabili<br>ikely outo<br>the<br>een | Roll           327/2105           = 0.155            | 431/2105<br>= 0.205<br>the i | n the _             | 790/2105<br>= 0.375 | 276/2105<br>= 0.131 | 89/2105<br>= 0.042 |
| P(not Jazz) =<br>=<br>What Should We Take Away?<br>The probability of an event involving<br>for a certain event d                                          | ivided by<br>per betwe | Probabili<br>ikely outo<br>the<br>een | Roll           327/2105           = 0.155            | 431/2105<br>= 0.205<br>the i | n the _             | 790/2105<br>= 0.375 | 276/2105<br>= 0.131 | 89/2105<br>= 0.042 |



Name\_\_\_\_\_

### AP Statistics CED 4.4 Daily Video 1 (Skill 4.B)

Mutually Exclusive Event

| What Will We Learn?                       |             |                     |                     |                     |                     |                     |                    |
|-------------------------------------------|-------------|---------------------|---------------------|---------------------|---------------------|---------------------|--------------------|
| Why are some events mutually exclusi      | va and a    | thar not?           | )                   |                     |                     |                     |                    |
|                                           | ve, and o   |                     |                     |                     |                     |                     |                    |
| Listen Up!                                |             |                     |                     |                     |                     |                     |                    |
| In this example, each column              | Genre       | Rock &              | Jazz                | Classical           | Hip-Hop             | World               | Рор                |
| represented the number of albums          | Brobobility | Roll                | 421/2105            | 102/2105            | 700/2105            | 276/2105            | 90/2105            |
| of different genre that were sold by      | Probability | 327/2105<br>= 0.155 | 431/2105<br>= 0.205 | 192/2105<br>= 0.091 | 790/2105<br>= 0.375 | 276/2105<br>= 0.131 | 89/2105<br>= 0.042 |
| a record store. Because an album can      |             | laccified           | hy a sing           | la ganra            | the gen             | rogaro              |                    |
|                                           |             |                     |                     |                     |                     |                     |                    |
| <br>occur at the                          |             |                     |                     |                     | ) eve               | 51115               |                    |
|                                           |             |                     | •                   |                     |                     |                     |                    |
| Venn Diagrams                             |             |                     |                     |                     |                     |                     |                    |
| can be used to r                          | represent   | probabi             | ities in a          |                     |                     | form. Ve            | nn                 |
| diagrams often use circles/ovals to rep   |             |                     |                     |                     |                     |                     |                    |
| is the                                    |             |                     |                     | •                   |                     |                     | •                  |
|                                           |             |                     |                     |                     |                     |                     |                    |
| When we draw a Venn diagram, we           |             | А                   |                     |                     |                     | В                   |                    |
| want to start off with some sort of       |             |                     |                     |                     |                     |                     |                    |
| rectangle to represent the entire         |             |                     |                     |                     |                     |                     |                    |
|                                           |             |                     |                     |                     |                     |                     |                    |
| ·                                         |             |                     |                     |                     |                     |                     |                    |
| Mutually Exclusive Events                 |             |                     |                     |                     |                     |                     |                    |
| events a                                  | ire         | А                   |                     |                     |                     | В                   |                    |
| events that occur a                       |             |                     |                     |                     |                     | _                   |                    |
| the same time. There would be             |             |                     |                     |                     |                     |                     |                    |
| of th                                     | e           |                     |                     |                     |                     |                     |                    |
| two events.                               |             |                     |                     |                     |                     |                     |                    |
| Number Cubes                              |             |                     |                     |                     |                     |                     |                    |
|                                           |             |                     |                     |                     |                     |                     |                    |
| Consider rolling a number cube with s     | ide 1 – 6.  |                     |                     |                     |                     |                     |                    |
| -                                         |             |                     |                     |                     |                     |                     |                    |
| Event A =                                 |             |                     |                     |                     |                     |                     |                    |
|                                           |             |                     |                     |                     |                     |                     |                    |
| Event B =                                 |             |                     |                     |                     |                     |                     |                    |
|                                           |             |                     |                     |                     |                     |                     |                    |
| Event C =                                 |             |                     |                     |                     |                     |                     |                    |
|                                           |             |                     |                     |                     |                     |                     |                    |
| Calculate P(A $\cap$ B) and P(A $\cap$ C) |             |                     |                     |                     |                     |                     |                    |
| P(A ∩ B) =                                |             | A                   | nd C ara            |                     |                     |                     |                    |
|                                           |             | Ad                  |                     | ·                   |                     |                     |                    |
| P(A ∩ C) =                                |             |                     |                     |                     |                     |                     |                    |
|                                           |             |                     |                     |                     |                     |                     |                    |
|                                           |             |                     |                     |                     | _                   |                     |                    |



|                                                                                                         |                    | Name_             |         |                     |         |         |          |
|---------------------------------------------------------------------------------------------------------|--------------------|-------------------|---------|---------------------|---------|---------|----------|
| Super Status!                                                                                           |                    |                   | Famous  | Нарру               | Healthy | Rich    | TOTAL    |
| High school students from across the country                                                            | / answered         | Fly               |         |                     |         |         |          |
| the following two questions:                                                                            |                    |                   | 2       | 57                  | 8       | 22      | 89       |
| *If you had to choose a superpower, what wo                                                             |                    | Freeze<br>Time    | 4       | 63                  | 16      | 32      | 115      |
| - fly, freeze time, invisibility, super strength,                                                       | telepathy          | Invisibility      | 6       | 47                  | 10      | 20      | 83       |
| *Which of the following statuses would you p                                                            | orefer to          | Super<br>Strength | 3       | 15                  | 4       | 7       | 29       |
| describe you?                                                                                           |                    | Telepathy         | 0       | 83                  | 13      | 21      | 117      |
| - famous, happy, healthy, rich                                                                          |                    | TOTAL             | 15      | 265                 | 51      | 102     | 433      |
| The results from a sample of 433 respondent                                                             | s are shown in     | the table         | e.      |                     |         |         |          |
| Super Status! (See the table above)                                                                     |                    |                   | -       |                     |         |         |          |
| The data are summarized in a                                                                            |                    | . Probab          | ilities | can be              | e found | by ca   | lculatir |
| the of the desired frequencies.                                                                         |                    |                   |         |                     |         | ,       |          |
| <pre>Super Status! Example: What is the probability that a rando time? - P(Happy ∩ Freeze Time) =</pre> | -                  |                   |         |                     |         |         |          |
| This probability is called the                                                                          |                    |                   |         | •                   | ווומפממ | y of tr | ie       |
| intersection of the events an                                                                           | d                  |                   |         | _·                  |         |         |          |
| Super Status!                                                                                           |                    |                   |         |                     |         |         |          |
| Example: What is the probability that a selec                                                           | ted student ch     | ose to be         | e famo  | ous and             | d telep | athic?  |          |
| - P(Famous ∩ Telepathy) =                                                                               |                    |                   |         |                     |         |         |          |
| Because no students chose to be                                                                         | famous             | and tele          | epathio | c, the <sup>.</sup> | two ev  | ents ai | re       |
| (                                                                                                       |                    | _).               |         |                     |         |         |          |
| What Should We Take Away?                                                                               |                    |                   |         |                     |         |         |          |
| The is the p                                                                                            | probability if the | e                 |         |                     |         | _ of tv | NO       |
| event.                                                                                                  |                    |                   |         |                     |         |         |          |
|                                                                                                         |                    |                   |         |                     |         |         |          |
| Two events are                                                                                          | (                  | ) if <sup>.</sup> | thev    |                     |         |         | occu     |



| Name |  |
|------|--|
|------|--|

## AP Statistics CED 4.5 Daily Video 1 (Skill 3.A) Conditional Probability

| What Will We Learn?                                                                |                                       |                                           |
|------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------|
| What is conditional probability?                                                   |                                       |                                           |
| How does conditional probability help                                              | us find the joint probability P(A ar  | na B)?                                    |
| Marble-ous!                                                                        |                                       |                                           |
|                                                                                    | a at random (without ranksomen        | t) M/bat is the probability               |
| Suppose we select tow of these marbles                                             | s at random (without replacemen       | t). What is the probability               |
| that both marbles are fully red?                                                   |                                       |                                           |
| Assign two events: A =                                                             | B –                                   |                                           |
| <u>Assign two events</u> . A –                                                     | D =                                   |                                           |
| P(A) = What abou                                                                   | it the second marble being red? I     | on what the                               |
| first marble was. The probability of the                                           |                                       |                                           |
| status of the marble.                                                              |                                       |                                           |
|                                                                                    |                                       |                                           |
|                                                                                    |                                       |                                           |
|                                                                                    |                                       |                                           |
| All and                                                                            |                                       |                                           |
| All red                                                                            |                                       |                                           |
| 4/10                                                                               |                                       |                                           |
| Tree Diagram:                                                                      |                                       |                                           |
| (Complete with Video) 6/10                                                         |                                       |                                           |
| Not all                                                                            |                                       |                                           |
| red                                                                                |                                       |                                           |
|                                                                                    |                                       |                                           |
|                                                                                    |                                       |                                           |
| Conditional Probability                                                            |                                       | P(B   A)                                  |
| We can use the following notation to re                                            | present conditional probabilities:    | All red                                   |
| P(B   A) is read, ""                                                               |                                       | 4/10 Fin Red 6/9 Not all red              |
|                                                                                    |                                       | $\langle$                                 |
| What is the probability that event B                                               | occur given that event A              | 6/10 4/9 All red                          |
| occurred?                                                                          | -                                     | Not all<br>red 5/9 Not all<br>red         |
| Marble-ous!                                                                        |                                       | P(B   A)                                  |
| Suppose we select two of these marble                                              | es at random (without                 | 3/9 All red                               |
| replacement). What is the probability th                                           |                                       | P(A) All red                              |
|                                                                                    |                                       | 4/10 6/9 Not all red                      |
| Multiplication Rule:<br>$P(A) \cdot P(B \mid A) = A$                               | $P(A \cap B)$                         | $\langle$                                 |
| $\mathbf{r}(\mathbf{A}) \cdot \mathbf{r}(\mathbf{D} \mid \mathbf{A}) = \mathbf{I}$ |                                       | 6/10 4/9 All red                          |
| For our example: $P(A \cap B) =$                                                   |                                       | Not all                                   |
| =                                                                                  |                                       | 5/9 red                                   |
| =                                                                                  |                                       | $\mathbf{D}(\mathbf{A} \circ \mathbf{P})$ |
| Divide both sides by P(A) to get formul                                            | a for conditional probability.        | $P(B \mid A) = \frac{P(A \cap B)}{P(A)}$  |
|                                                                                    |                                       | $\mathbf{P}(\mathbf{A})$                  |
| *Note this formula can be "flip-flopped                                            | I" for P(A   B) = $\frac{P(B)}{P(B)}$ |                                           |
|                                                                                    |                                       |                                           |
|                                                                                    | L                                     | STATS MEDIC                               |

#### Name

Fly

Freeze

Invisibility

Time

Super

Strength

Telepathy

TOTAL

Famous

2

4

6

3

0

15

=

Нарру

57

63

47

15

83

265

Healthy

8

16

10

4

13

51

Famous Happy 57

63

2

4

4 63

6 47

3

0 83

15 265

Famous Нарру

> 2 57

4 63

6

3 15

0 83

15

15

47

265

Freeze Time

Invisibility

Super Strength

Telepathy

TOTAL

Freeze Time

Invisibility

Super Strength

Telepathy

TOTAL

Rich

22

32

20

7

21

102

Healthy Rich

8

16

TOTAL

89

115

83

29

117

433

TOTAL

115

115

83

29

117

433

TOTAL

89

115

83

29

117

433

(22) (89)

32

32

20

7

21

(102)

22

32

20

7

21

(102)

#### Super Status!

High school students from across the country answered the following two questions:

\*If you had to choose a superpower, what would it be?

- fly, freeze time, invisibility, super strength, telepathy

\*Which of the following statuses would you prefer to describe you?

- famous, happy, healthy, rich

The results from a sample of 433 respondents are shown in the table.

What is the probability that a "randomly selected" student stated that they wanted to be rich, given they also wanted to fly?

$$P(Rich \mid Fly) = \frac{P(Rich \cap Fly)}{P(Fly)} =$$

| Super Status!                                                     |                |
|-------------------------------------------------------------------|----------------|
| •                                                                 |                |
| This same question can be answered by looking at a two-way table. | Fly            |
| For our problem, the Condition: so we look solely at this         | Freeze<br>Time |
| row of the table to the right.                                    | Invisibility   |
| -                                                                 | Super          |

P(Rich | Fly) =

#### Super Status!

The order of the conditional statement matters! For this problem, the Condition: \_\_\_\_\_. We are only interested in students who said they wanted to be \_\_\_\_\_ and also said they wanted to \_\_\_\_\_.

P(Fly | Rich) =

Super Status! Sometimes we need to look at more than one column. In this case the condition is: \_\_\_\_\_

P(Fly | Rich') =

#### What Should We Take Away?

\_\_\_\_\_ is the probability that an event happens \_\_\_\_\_\_ that another event is known to have \_\_\_\_\_ happened. The rule for two events

A and B is: 
$$P(A \cap B) = P(A) \cdot P(B \mid A)$$



16

10

4

<mark>1</mark>3

51

Healthy Rich

8

16

10

4

13

51



| Ν | а | m | ۱ | е |
|---|---|---|---|---|
|---|---|---|---|---|

### AP Statistics CED 4.6 Daily Video 1 (Skill 3.A)

Independent Events and Union of Events

| What Will We Learn?                                             |                                 |                  |
|-----------------------------------------------------------------|---------------------------------|------------------|
| How can conditional probabilities be used to determine          | e independence?                 |                  |
| How can we use the multiplication rule to determine ind         | dependence?                     |                  |
| Marble-ous! Part 2                                              |                                 | 4/10 All red     |
| Suppose we selected one marble at random, replace it,           | , and then                      |                  |
| randomly select a second marble. What is the probabili          | ty that both 4/10               | 6/10 Not all red |
| marbles are fully red?                                          |                                 |                  |
| First, we define our events. A =                                | and 6/10                        | 4/10 All red     |
| B =                                                             | Not:                            | All Not all      |
| Independent Events                                              |                                 | led              |
| P(A   B) = and P(A   B') =                                      |                                 |                  |
| (same is true with know if B has occurred)                      |                                 |                  |
| P(B   A) = and P(B   A') =                                      |                                 |                  |
| Independent Events                                              |                                 |                  |
| General Multiplication Rule: $P(A \text{ and } B) = P(A) \cdot$ |                                 |                  |
|                                                                 |                                 |                  |
| But because of (or in the case of t                             | two independent events) we can  | know that        |
| our conditional probability is equal to the unconditional       |                                 |                  |
| two events are independent.                                     | probability, if we check to mak |                  |
| Marble-ous! Part 2                                              |                                 |                  |
| Events A and B are independent if, and only if, knowing         | whathar                         | P(B   A)         |
| or not event A has occurred (or will occur) does not cha        |                                 | 4/10 All red     |
|                                                                 |                                 | 7 Milliou        |
| probability that event B will occur. First, determine the       |                                 | 6/10 Not all     |
| A = and B =                                                     |                                 | red              |
|                                                                 |                                 |                  |
| So in our example: P(A   B) and P(B)                            | 6/10                            |                  |
|                                                                 |                                 | 4/10 All red     |
| Therefore, P(A and B) = P(A) $\cdot$ P(B). In our example then  | red                             | Not all          |
| P(A and B) = =                                                  | _                               | o/10 red         |
|                                                                 |                                 |                  |
| Independent Events                                              |                                 |                  |
| Suppose you selected four marbles, one at a time, with          |                                 | bility of        |
| selecting two red marbles followed by two non-red mar           | bles?                           |                  |
|                                                                 |                                 |                  |
| P(Red and Red and Non-Red and Non-Red) =                        | =                               |                  |
|                                                                 |                                 |                  |
| Independent Events                                              |                                 |                  |
| Suppose you select 10 marbles, one at a time, with rep          |                                 |                  |
| one marble is red? For this type of problem we will use         | the                             | Rule             |
|                                                                 |                                 |                  |
| P(at least one red) = =                                         | =                               |                  |
|                                                                 |                                 |                  |
|                                                                 |                                 |                  |
|                                                                 | STATS                           |                  |

| Na                                                                                | Name                 |        |                |              |        |        |
|-----------------------------------------------------------------------------------|----------------------|--------|----------------|--------------|--------|--------|
| Determining Independence                                                          |                      |        |                |              |        |        |
| Consider two events, E and F.                                                     |                      |        |                |              |        |        |
| P(E) =; P(F) = and P(E and F) =                                                   | A                    | re the | e ever         | nts E ar     | nd F   |        |
| independent?                                                                      |                      |        |                |              |        |        |
|                                                                                   |                      |        |                |              |        |        |
| If two events are, then P(E   F) = P                                              | (E). We              | need   | to ca          | lculate      | e the  |        |
| probability P(E   F).                                                             |                      |        |                |              |        |        |
|                                                                                   |                      |        |                |              |        |        |
| P(E   F) = =                                                                      |                      | ≈      |                |              |        |        |
|                                                                                   |                      |        |                |              |        |        |
| Now, compare $P(E   F)$ to $P(B) =$ , are the                                     |                      |        |                |              |        |        |
| Because P(E   F) P(B), the events E and F are                                     |                      |        |                |              |        | •      |
| Determining Independence                                                          |                      | 0.05   |                |              |        |        |
| Consider two events, E and F. $P(E) = .40$ ; $P(F) = 0.60$ and $P(E a = 0.60)$    |                      |        |                |              | ents E | and F  |
| independent? If two events are independent, then $P(E \text{ and } F) =$          | =                    |        |                | •            |        |        |
|                                                                                   |                      |        |                |              |        |        |
| So, we need to calculate =                                                        |                      | _ = _  |                |              |        |        |
|                                                                                   |                      |        |                |              |        |        |
| Because P(E and F) P(E) · P(F), the events                                        | _are                 |        |                |              |        | ·      |
| Super Status!                                                                     |                      | Famous | Нарру          | Healthy      | Rich   | TOTAL  |
| High school students from across the country answered the                         | Fly                  | 2      | 57             | 8            | 22     | 89     |
| following two questions:<br>*If you had to choose a superpower, what would it be? | Freeze               |        |                |              |        |        |
| - fly, freeze time, invisibility, super strength, telepathy. The results          | Time<br>Invisibility | 4      | 63             | 16           | 32     | 115    |
| from a sample of 433 respondents are shown in the table.                          |                      | 6      | 47             | 10           | 20     | 83     |
| Are the events "choose invisibility" and "choose to be famous"                    | Super<br>Strength    | 3      | 15             | 4            | 7      | 29     |
| independent? Justify your answer.                                                 | Telepathy            | 0      | 83             | 13           | 21     | 117    |
|                                                                                   | TOTAL                | 15     | 265            | 51           | 102    | 433    |
| If the two events are then P( I                                                   |                      |        |                |              |        |        |
| ) = P()                                                                           |                      |        |                |              |        |        |
| P() =)                                                                            | =                    |        |                |              |        |        |
| P() = =                                                                           |                      |        |                |              |        |        |
| Because the probability is e                                                      | qual to              | the _  |                |              |        |        |
| probability, the events are                                                       |                      |        |                |              |        |        |
|                                                                                   |                      |        |                |              |        |        |
| We can also calculate this from the two-way table. If the two ev                  | vents ar             | е      |                |              |        |        |
| then P() −) = P() · P ()                                                          |                      |        | ) So t         | to cheo      | ck thi | S      |
| P() = =                                                                           |                      |        |                |              |        |        |
| P() · P () =                                                                      | _ =                  |        |                |              |        |        |
| Because the probability of the is                                                 |                      |        |                |              | c      | of the |
| individual probabilities, the events are                                          |                      |        |                | _ <u>·</u> _ |        |        |
| What Should We Take Away?                                                         |                      |        |                |              |        |        |
| Two events A and B are independent if, and only if, P(A B)                        | = P(A)               | and F  | <b>P(B A</b> ) | ) = P(B      | 3)     |        |
| Two events A and B are independent if, and only if, P(A and                       | nd B) =              | P(A) · | <b>P(B)</b>    |              |        |        |



| Ν | а | m | ۱e | Э |
|---|---|---|----|---|
|   |   |   |    |   |

## AP Statistics CED 4.6 Daily Video 2 (Skill 3.A)

Independent Events and Unions of Events

| What Will We Learn?                                                          |                   |            |         |         |       |       |  |
|------------------------------------------------------------------------------|-------------------|------------|---------|---------|-------|-------|--|
| How do we calculate the probability for the union of two events?             |                   |            |         |         |       |       |  |
| Union of Events                                                              |                   | <i>.</i> . |         |         |       |       |  |
| The probability that event A or event B (or both) will occur is the probab   | oility c          | of the     | ·       |         |       |       |  |
| of A and B, denoted P(A ∪ B).                                                |                   |            |         |         |       |       |  |
|                                                                              |                   |            |         |         |       |       |  |
| The states that the probability that event A and a                           | event             | B or       |         |         | _ wil | I     |  |
| occur is to the probability that event A will occur,                         | th                | ne pr      | obab    | oility  | that  | event |  |
| B will occur, the probability that events A an                               | d B wi            | ll oc      | cur. 1  | This i  | S     |       |  |
| denoted: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$                           |                   |            |         |         |       |       |  |
|                                                                              |                   |            |         |         |       |       |  |
| Venn Diagrams                                                                |                   |            |         |         |       |       |  |
| Venn diagrams can be used to represent probabilities in a                    |                   |            |         |         | В     |       |  |
| form. Venn Diagrams often use circles/ovals                                  |                   | Aυ         | B       |         |       |       |  |
| to represent The portion contained within                                    |                   |            |         |         |       |       |  |
| either oval is the of the two events, and is represented by                  | tho n             | otati      | <u></u> |         |       |       |  |
| of the two events, and is represented by                                     | the n             | otati      | 011     |         |       | ·     |  |
| Number Cubes                                                                 |                   |            |         |         |       |       |  |
|                                                                              |                   |            |         |         |       |       |  |
| Consider rolling a number cube with side 1 -6. Define our events.            |                   |            |         |         |       |       |  |
| Event A = = Event B =                                                        |                   |            |         |         |       |       |  |
| Calculate the P(A $\cup$ B) (Use the addition rule above and make sure to no | ot dou            | ble        | count   | out     | com   | es!)  |  |
|                                                                              |                   |            |         |         |       |       |  |
| P(A ∪ B) = ≈                                                                 |                   |            |         |         |       |       |  |
| Colordation the Union                                                        |                   |            |         |         |       |       |  |
| Calculating the Union                                                        |                   |            | ~       | • • •   |       |       |  |
| Consider two events, E and F. P(E) =; P(F) = and P                           |                   |            |         | ind t   | he    |       |  |
| probability of event E or event F (or both) happens. (Again, us the form     |                   | ove.)      |         |         |       |       |  |
| We need to find: $P(E \cap F) = P(F) \cdot P(E \mid F) = \_$ =               | ·                 |            |         |         |       |       |  |
| Once we have this, we can use the formula:                                   |                   |            |         |         |       |       |  |
| P(E U F) = =                                                                 |                   |            |         |         |       |       |  |
|                                                                              |                   |            |         |         |       |       |  |
| Super Status!                                                                |                   |            |         |         |       |       |  |
| High school students from across the country answered the following          |                   | Famous     | Нарру   | Healthy | Rich  | TOTAL |  |
| two questions:                                                               | Fly               | 2          | 57      | 8       | 22    | 89    |  |
| *If you had to choose a superpower, what would it be?                        | Freeze<br>Time    | 4          | 63      | 16      | 32    | 115   |  |
| - fly, freeze time, invisibility, super strength, telepathy                  | Invisibility      | 6          | 47      | 10      | 20    | 83    |  |
| The results from a sample of 433 respondents are shown in the table.         | Super<br>Strength | 3          | (15)    | 4       | 7     | 29    |  |
|                                                                              |                   |            |         |         |       |       |  |
|                                                                              | TOTAL             | 15         | 265     | 51      | 102   | 433   |  |
| or wants super strength? First we define the events:                         |                   |            |         |         |       |       |  |
| $A = \underline{\qquad \qquad } B = \underline{\qquad \qquad } now find:$    |                   |            |         |         |       |       |  |
| $P(A \cup B) = P(A \text{ or } B) = $ (copy formula)                         |                   |            |         |         |       |       |  |
| ==                                                                           | _ = _             |            |         |         |       |       |  |
|                                                                              |                   | ST         | AT      | SN      | ΛEI   | DIC   |  |

| Nam                                                              | e                 |        |        |         |       |       |
|------------------------------------------------------------------|-------------------|--------|--------|---------|-------|-------|
| Super Status!                                                    |                   |        |        |         |       |       |
| What is the probability of selecting a student who chose to      |                   | Famous | Нарру  | Healthy | Rich  | TOTAL |
| freeze time or want super strength? Be sure to start by defining | Fly               | 2      | 57     | 8       | 22    | 89    |
| the events:                                                      | Freeze<br>Time    | 4      | 63     | 16      | 32    | 115   |
| A =<br>B -                                                       | Invisibility      | 6      | 47     | 10      | 20    | 83    |
| B =                                                              | Super<br>Strength | 3      | 15     | 4       | 7     | 29    |
| $P(A \text{ or } B) = P(A \cup B) = P(A) + P(B) - P(A \cap B)$   | Telepathy         | 0      | 83     | 13      | 21    | 117   |
|                                                                  | TOTAL             | 15     | 265    | 51      | 102   | 433   |
| Looking at the table to the right, we see that events A and B    |                   |        |        |         |       |       |
| are, so the P(A or B) =                                          | _; So u           | sing t | he for | mula v  | we ge | t:    |
| P(A or B) = P(A) + P(B) = =                                      | :                 |        |        |         |       |       |
| What Should We Take Away?                                        |                   |        |        |         |       |       |
|                                                                  |                   |        |        |         |       |       |
| The probability of the union of two events can be found by the f | ormula            | 1:     |        |         |       |       |
|                                                                  |                   |        |        |         |       |       |
|                                                                  |                   |        |        |         |       |       |



| Ν | а | m | ۱e | ć |
|---|---|---|----|---|
|   |   |   |    |   |

### AP Statistics CED 4.6 Daily Video 3 (Skill 3.A)

Independent Events and Unions of Events

|                                |                    | er Eventes                              |                  |              |                    |
|--------------------------------|--------------------|-----------------------------------------|------------------|--------------|--------------------|
| What Will We Learn?            |                    |                                         |                  |              |                    |
| How can we distinguish qu      | estions involv     | ving conditional an                     | nd uncondition   | al probabil  | ities?             |
| How do we determine whi        | ch probability     | formula to use wh                       | nen?             |              |                    |
| Probability Recap              |                    |                                         |                  |              |                    |
| If all outcomes in a sample    | e space are e      | qually likely, then t                   | he probability   | of an even   | it E occurring can |
| be defined as:                 |                    |                                         |                  |              | -                  |
|                                |                    |                                         |                  |              |                    |
| The probability of an event    | t is a number      | between                                 |                  |              |                    |
| The probability of the com     |                    |                                         |                  |              | is equal           |
| to                             |                    |                                         |                  |              |                    |
| Probability Recap              |                    |                                         |                  |              |                    |
| *Probabilities can be interp   | preted as the      |                                         | relative         | frequency    | , the event will   |
| occur if the random proces     |                    |                                         |                  | nequency     |                    |
| *Two events are                |                    |                                         |                  |              | occur at           |
| the same time. If two even     |                    |                                         |                  |              |                    |
| * p                            |                    |                                         |                  |              |                    |
|                                |                    |                                         |                  | -            | en that another    |
| event has                      | occurre            | a. which is denote                      | ed by the form   | lia:         |                    |
|                                |                    |                                         |                  |              |                    |
| Ρ(                             | (A   B) =          |                                         |                  |              |                    |
|                                |                    |                                         |                  |              |                    |
| Probability Recap              |                    | <i>,</i>                                |                  |              |                    |
| The probability of the         |                    |                                         | s can be tound   | by the for   | mula:              |
| *P(A ∩ B) =                    |                    |                                         |                  |              |                    |
| If two events are              |                    |                                         |                  |              |                    |
| *P(A   B) =                    |                    |                                         |                  |              |                    |
| *P(B   A) =                    |                    |                                         |                  |              |                    |
| *P(A ∩ B) =                    |                    |                                         |                  |              |                    |
|                                |                    |                                         |                  |              |                    |
| What's the News?               |                    |                                         |                  |              |                    |
| An advertising agency in a     | large city is c    | onducting a surve                       | y of adults to i | nvestigate   | whether there is   |
| an association between hig     | ghest level of     | educational achiev                      | vement and pri   | imary sour   | ce for news. The   |
| company take a random sa       | mple of 2500       | ) adults in the city.                   | The results are  | e shown in   | the table below.   |
|                                |                    | ,                                       |                  |              |                    |
|                                |                    | EL OF EDUCATIONAL                       | ACHIEVEMENT      |              |                    |
| Primary Source                 | Not High<br>School | High School Graduate<br>But Not College | College Graduate | Total        |                    |
| for News                       | Graduate           | Graduate                                |                  |              |                    |
| Newspapers<br>Local television | <u>49</u><br>90    | 205                                     | 188<br>75        | 442          |                    |
| Cable television               | 113                | 496                                     | 147              | 756          |                    |
| Internet                       | 41                 | 401                                     | 245              | 687          |                    |
| None<br>Total                  | 77<br>370          | 165                                     | 38<br>693        | 280<br>2,500 |                    |
| Total                          | 570                | 1,101                                   | 575              | 2,000        |                    |
| (a) If an adult is to be selec | ted at randor      | n from this ample,                      | what is the pro  | obability th | nat the selected   |
| adult is a college graduate    | or obtains ne      | ews primarily from                      | the internet?    |              |                    |



|                                                                                                                        | Name                                            |
|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| What's the News?                                                                                                       |                                                 |
| Define the events: A:                                                                                                  | and B:                                          |
| Use the formula: P(A or B) =                                                                                           |                                                 |
|                                                                                                                        |                                                 |
| =                                                                                                                      | =                                               |
| What's the News?                                                                                                       |                                                 |
| (b) If an adult who is a college graduate is to be selecte                                                             | •                                               |
| probability that the selected adult obtains news primar                                                                | ly from the internet?                           |
| Define the events: A =                                                                                                 | and B =                                         |
|                                                                                                                        |                                                 |
| Use the formula: P(B   A) ==                                                                                           | = = =                                           |
| What's the News?                                                                                                       |                                                 |
| To distinguish between part A and part B we have to lo                                                                 | ok at the two questions: (Highlight with video) |
| (a) If an adult is to be selected at random from this amr                                                              | le what is the probability that the selected    |
| (a) If an adult is to be selected at random from this amp<br>adult is a college graduate or obtains news primarily fro | -                                               |
| adult is a college graduate of obtains news primarily ind                                                              | om the internet?                                |
| Adult selected                                                                                                         |                                                 |
|                                                                                                                        |                                                 |
| (b) If an adult who is a college graduate is to be selecte                                                             | ad at random from this sample, what is the      |
| probability that the selected adult obtains news primar                                                                | •                                               |
|                                                                                                                        | ly nom the internet:                            |
| Adult selected                                                                                                         |                                                 |
| Adult selected<br>What's the News?                                                                                     |                                                 |
| (c) When selecting an adult at random from the sample                                                                  | of 2 500 adults, are the events "is a college   |
| graduate" and "obtains new primarily from the internet                                                                 | -                                               |
| Define the events: A =a                                                                                                |                                                 |
| Use the formula: P(B   A) =                                                                                            |                                                 |
| $*P(B   A) = \ and the P(B)$                                                                                           | _                                               |
| Because the probabili                                                                                                  |                                                 |
| to the probability P(interr                                                                                            |                                                 |
| and "" are                                                                                                             |                                                 |
| OR                                                                                                                     |                                                 |
| Use the formula: $P(A \cap B) = P(A) \cdot P(B);$                                                                      |                                                 |
| $*P(A \cap B) = \_\_\_= \_$                                                                                            |                                                 |
| F(ATTB) = =                                                                                                            |                                                 |
| *P(A) · P(B) = =                                                                                                       |                                                 |
| What Should We Take Away?                                                                                              |                                                 |
| Conditional Probabilities can be calculated from                                                                       | by selecting the                                |
| appropriate or                                                                                                         |                                                 |
| If the conditional probability is is is                                                                                |                                                 |
| , then the events A and B are                                                                                          |                                                 |
| The probability for the of two events ca                                                                               |                                                 |
| P(A or B) =                                                                                                            |                                                 |



### AP Statistics CED 4.7 Daily Video 1 (Skill 2.B)

Introduction to Random Variables and Probability Distributions

| What Will We Learn?                                                           | ,<br>,                                      |  |  |  |  |
|-------------------------------------------------------------------------------|---------------------------------------------|--|--|--|--|
| How should we define a random variable?                                       |                                             |  |  |  |  |
| What is the difference between a discrete and continuous ra                   | ndom variable?                              |  |  |  |  |
| How can we display a probability distribution for a discrete r                |                                             |  |  |  |  |
| Random Variables:                                                             |                                             |  |  |  |  |
| Random variables are outcomes of                                              |                                             |  |  |  |  |
|                                                                               | ·                                           |  |  |  |  |
| For example:                                                                  | a classical beyond a la                     |  |  |  |  |
| • X = in a                                                                    | selected nousenoid.                         |  |  |  |  |
| • W = it takes a                                                              |                                             |  |  |  |  |
| • Y = the number of                                                           |                                             |  |  |  |  |
| • L = of a                                                                    | _ selected person's index finger.           |  |  |  |  |
| Discrete Versus Continuous Random Variables                                   | Note that there are spaces                  |  |  |  |  |
| A random variable can only take a                                             | between the values                          |  |  |  |  |
| number of values.                                                             |                                             |  |  |  |  |
| X = number of children in a randomly selected household.                      |                                             |  |  |  |  |
| *Note: countable could mean                                                   |                                             |  |  |  |  |
| A random variable can take on an                                              | number of values in an                      |  |  |  |  |
| on a number line.                                                             | Note that there are no spaces               |  |  |  |  |
| W = time (in minutes) it takes a randomly                                     | between the possible values                 |  |  |  |  |
| selected person to run a mile. The current                                    | +                                           |  |  |  |  |
| world record for the mile is 3:43 minutes.                                    | 3 4 5 6 7 8<br>Time to run a mile (minutes) |  |  |  |  |
| Classifying Random Variables                                                  |                                             |  |  |  |  |
| • X = number of children in a randomly selected house                         | ehold                                       |  |  |  |  |
| • W = time (min) it takes a randomly selected person to                       |                                             |  |  |  |  |
| • L = length (cm) of a randomly selected person's inde                        |                                             |  |  |  |  |
| Thermostat Settings:                                                          |                                             |  |  |  |  |
| Proper disposal and reduction of refrigerant chemicals used                   | to cool our homes in heat of summer are     |  |  |  |  |
| a high priority in reducing $CO_2$ and $CO_2$ equivalents into the            |                                             |  |  |  |  |
| of Austin recommends setting thermostats to 78 degrees for                    |                                             |  |  |  |  |
| X = the a thermostat is set below                                             | -                                           |  |  |  |  |
|                                                                               | the recommended 70 degrees.                 |  |  |  |  |
| The thermostat is set at degrees. The difference be                           | atween the recommended setting and          |  |  |  |  |
| the actual setting is degrees. So would b                                     | •                                           |  |  |  |  |
|                                                                               |                                             |  |  |  |  |
| The thermostat is set at degrees. The difference be                           | •                                           |  |  |  |  |
| the actual setting is degrees. So would b                                     | e the value of our random variable X.       |  |  |  |  |
| Probability of a Random Variable.                                             |                                             |  |  |  |  |
| The city of Austin recommends setting thermostats to 78 de                    | grees for air conditioning. A study         |  |  |  |  |
| determined that:                                                              |                                             |  |  |  |  |
| • The probability that a randomly selected thermostat                         | _                                           |  |  |  |  |
| • The probability that a randomly selected thermostat                         |                                             |  |  |  |  |
| A display of the entire set of values with associated probability is called a |                                             |  |  |  |  |



|                                          |                          |             | Nar         | ne           |            |             |              |          |            |
|------------------------------------------|--------------------------|-------------|-------------|--------------|------------|-------------|--------------|----------|------------|
| Probability Distributions                |                          | temp.       | 78          | 77           | 76         | 75          | 74           | 73       | 72         |
| There are two properties of a probabil   | ity                      | Х           | 0           | 1            | 2          | 3           | 4            | 5        | 6          |
| distributions:                           |                          | P(x)        | 0.03        | 0.03         | 0.05       | 0.18        | 0.31         | 0.28     | 0.12       |
|                                          |                          | X = the n   | umber of d  | legrees a tl | nermostat  | is set bel  | ow the reco  | mmended  | 78 degrees |
| 1. Each value is associated with a       |                          |             |             |              |            |             |              |          |            |
| 2. The sum of all probabilities must be  |                          | ·           |             |              |            |             |              |          |            |
| Calculating Probability with the Distrib | oution                   |             |             |              |            |             |              |          |            |
| Now that we have the complete distrik    | oution, we               | temp.       | 78          | 77           | 76         | 75          | 74           | 73       | 72         |
| can determine probabilities for defined  | d events.                | Х           | 0           | 1            | 2          | 3           | 4            | 5        | 6          |
| What is the probability that a randomly  | / selected               | P(x)        | 0.03        | 0.03         | 0.05       | 0.18        | 0.31         | 0.28     | 0.12       |
| thermostat is set at 74 degrees or lowe  | er?                      | X = the n   | umber of d  | egrees a th  | ermostat i | s set belov | w the recorr | mended 7 | 8 degrees  |
|                                          |                          |             |             |              |            |             |              |          |            |
| $P(X \ge 4) = $                          |                          |             | _ =         |              |            |             |              |          |            |
|                                          |                          |             |             |              |            |             |              |          |            |
| Calculating Probabilities                | temp. 78                 | 77          | 76          | 75           | 74         | 73          | 72           |          |            |
|                                          | x 0                      | 1           | 2           | 3            | 4          | 5           | 6            |          |            |
|                                          | P(x) 0.03 0              | 0.03 0      | 0.05 0      | ).18 0       | .31 (      | 0.28        | 0.12         |          |            |
| ×                                        | a = the number of degree | ees a therr | nostat is s | et below th  | e recomm   | nended 78   | degrees      |          |            |
| 1. What is the probability that a randor | mly selected             | therm       | ostat i     | s set a      | t 77 d     | egree       | es?          |          |            |
|                                          |                          |             |             |              | _          |             |              |          |            |
| 2. What is the probability that a randor | mly selected             | therm       | ostat i     | s set le     | ess tha    | an 74       | degree       | es?      |            |
|                                          |                          |             |             |              |            |             |              |          |            |
| 3. What is the probability that a randor | mly selected             | therm       | ostat i     | s set fo     | or at le   | east 7      | 5 degr       | ees?     |            |
|                                          |                          |             |             |              | _          |             |              |          |            |
| 4. What is the probability that a randor | mly selected             | therm       | ostat i     | s set a      | t 70 d     | egree       | es.          |          |            |
|                                          |                          |             |             |              | _          |             |              |          |            |
|                                          |                          |             |             |              |            |             |              |          |            |
| What Should We Take Away?                |                          |             |             |              |            |             |              |          |            |
| A random variable must be defined        |                          |             |             | <b></b>      |            |             |              |          |            |
| A probability dist                       | ribution give            | s           | p           | ossibl       | e outo     | comes       | paired       | d with   | each       |
| outcome's probability.                   |                          |             |             |              |            |             |              |          |            |
| The of probabilities for                 | poss                     | ible va     | lues o      | t a          |            |             | ran          | dom v    | variable   |
| is                                       |                          |             |             |              |            |             |              |          |            |
|                                          |                          |             |             |              |            |             |              |          |            |



#### AP Statistics CED 4.7 Daily Video 2 (Skill 4.B)

Introduction to Random Variables and Probability Distributions

#### What Will We Learn?

How can we describe a probability distribution?

What conclusions can be made from a probability distribution?

#### **Prairie Dogs**

Prairie dogs are keystone species. That means they are disproportionately important to their ecosystem. Many other species of plants and animals would suffer without them. Prairie dogs only mate once a year. The number of pups in a randomly selected litter varies and can be modeled by using a probability distribution.

| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Prairie Dog Pups: Probability Distribution         | X = th  | e numbe | r of pups | s in a ran | domly se       | elected p | rairie dog | litter |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------|---------|-----------|------------|----------------|-----------|------------|--------|
| Describing the Distribution         A histogram could be constructed for easier viewing.         • Shape         • Center         • Spread         Interpret the Distribution in Context         Should a zoologist be surprised if a randomly selected female prairie dog produced a litter with 6 or 7 pups?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                    | X       | 1       | 2         | 3          | 4              | 5         | 6          | 7      |
| A histogram could be constructed for easier viewing.<br>• Shape                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    | P(x)    | 0.15    | 0.38      | 0.27       | 0.11           | 0.05      | 0.03       | 0.01   |
| A histogram could be constructed for easier viewing.<br>• Shape                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    |         |         |           |            |                |           |            |        |
| A histogram could be constructed for easier viewing.<br>• Shape                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Describing the Distribution                        |         |         |           |            | 40             |           |            | _      |
| <ul> <li>Shape</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A histogram could be constructed for easier vi     | ewing.  |         |           |            |                |           |            |        |
| <ul> <li>Center</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                    |         |         |           |            | ability<br>0.3 |           |            |        |
| <ul> <li>Spread</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | • Shape                                            |         |         |           | _          | Probi<br>0.20  |           |            |        |
| Interpret the Distribution in Context         Should a zoologist be surprised if a randomly selected female prairie dog produced a litter with 6 or 7 pups? The probability of a litter having pups is only, which is relatively This event would be big news in the prairie dog world.         Thermostat Settings       remp. 76 77 76 75 74 73 72         Proper disposal and reduction of refrigerant chemicals used to cool our homes in heat of summer are a high priority in reducing CO2 and       x 0 1 2 3 4 5 6         CO2 equivalents into the atmosphere. Toward that end, the City of Austin recommended 78 degrees       0.13 0.03 0.05 0.18 0.31 0.28 0.12         Shape:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Center                                             |         |         |           | _          | 0.10           |           |            |        |
| Number of Paps in Litter         Interpret the Distribution in Context         Should a zoologist be surprised if a randomly selected female prairie dog produced a litter with 6 or 7 pups? The probability of a litter having pups is only, which is relatively This event would be big news in the prairie dog world.         Thermostat Settings         Proper disposal and reduction of refrigerant chemicals used to cool our homes in heat of summer are a high priority in reducing CO <sub>2</sub> and         X = the number of degrees a thermostat is set below the recommended 78 degrees         CO <sub>2</sub> equivalents into the atmosphere. Toward that end, the City of Austin recommends setting thermostats to 78 degrees for air conditioning. Describe the distribution:         •       Shape:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Spread                                             |         |         |           |            |                | 1 2 2     |            | 6.7    |
| Should a zoologist be surprised if a randomly selected female prairie dog produced a litter with 6 or 7 pups?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                    |         |         |           |            |                |           |            | b /    |
| 7 pups?       The probability of a litter having pups is only, which is relatively This event would be big news in the prairie dog world.         Thermostat Settings         temp. 78 77 76 75 74 73 72         Y and the prairie dog world.         Thermostat Settings         temp. 78 77 76 75 74 73 72         Y and the prairie dog world.         Thermostat Settings         temp. 78 77 76 75 74 73 72         Y and the prairie dog world.         Thermostat Settings         temp. 78 77 76 75 74 73 72         Y and the prairie dog world.         Y and the prairie dog world.         Y and the probability of a litter having the probability in reducing CO2 and Y | •                                                  |         |         |           |            |                |           |            |        |
| which is relatively This event would be big news in the prairie dog world.         Thermostat Settings         Proper disposal and reduction of refrigerant chemicals used to cool our homes in heat of summer are a high priority in reducing CO2 and         X = the number of degrees a thermostat is set below the recommended 78 degrees         CO2 equivalents into the atmosphere. Toward that end, the City of Austin recommendes setting thermostats to 78 degrees for air conditioning. Describe the distribution:         • Shape:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                    |         |         | •         |            |                |           |            |        |
| Thermostat Settings       temp.       78       77       76       75       74       73       72         Proper disposal and reduction of refrigerant chemicals used to cool our homes in heat of summer are a high priority in reducing CO2 and       x       0       1       2       3       4       5       6         P(x)       0.03       0.03       0.05       0.18       0.31       0.28       0.12         X       the number of degrees a thermostat is set below the recommended 78 degrees       X       the number of degrees a thermostat is set below the recommended 78 degrees         CO2 equivalents into the atmosphere. Toward that end, the City of Austin recommends setting thermostats to 78 degrees for air conditioning. Describe the distribution:       X       the number of degrees a thermostat is set below the recommended 78 degrees         •       Shape:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                    |         |         |           |            |                |           |            |        |
| Proper disposal and reduction of refrigerant chemicals used to cool our homes in heat of summer are a high priority in reducing CO2 and       x       0       1       2       3       4       5       6         P(x)       0.03       0.03       0.05       0.18       0.31       0.28       0.12         X = the number of degrees a thermostat is set below the recommended 78 degrees         CO2 equivalents into the atmosphere. Toward that end, the City of Austin recommends setting thermostats to 78 degrees for air conditioning. Describe the distribution:       X       0       1       2       3       4       5       6         P(x)       0.03       0.03       0.05       0.18       0.31       0.28       0.12         X = the number of degrees a thermostat is set below the recommended 78 degrees       X       the number of degrees a thermostat is set below the recommended 78 degrees         CO2 equivalents into the atmosphere. Toward that end, the City of Austin recommends setting       the intermostat is set below the recommended setting         thermostats to 78 degrees for air conditioning. Describe the distribution:                                                                                                                                                                                                                                                                                                                   | which is relatively This event                     | would   | l be bi | g new     | s in the   | e prairi       | ie dog    | world.     |        |
| Proper disposal and reduction of refrigerant chemicals used to cool our homes in heat of summer are a high priority in reducing CO2 and       x       0       1       2       3       4       5       6         P(x)       0.03       0.03       0.05       0.18       0.31       0.28       0.12         X = the number of degrees a thermostat is set below the recommended 78 degrees         CO2 equivalents into the atmosphere. Toward that end, the City of Austin recommends setting thermostats to 78 degrees for air conditioning. Describe the distribution:       X       0       1       2       3       4       5       6         P(x)       0.03       0.03       0.05       0.18       0.31       0.28       0.12         X = the number of degrees a thermostat is set below the recommended 78 degrees       X       the number of degrees a thermostat is set below the recommended 78 degrees         CO2 equivalents into the atmosphere. Toward that end, the City of Austin recommends setting       the intermostat is set below the recommended setting         thermostats to 78 degrees for air conditioning. Describe the distribution:                                                                                                                                                                                                                                                                                                                   |                                                    |         |         |           |            |                |           |            |        |
| chemicals used to cool our homes in heat of<br>summer are a high priority in reducing CO2 and       P(x)       0.03       0.05       0.18       0.31       0.28       0.12         X = the number of degrees a thermostat is set below the atmosphere. Toward that end, the City of Austin recommends setting<br>thermostats to 78 degrees for air conditioning. Describe the distribution:       X = the number of degrees a thermostat is set below the recommended 78 degrees         •       Shape:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                                  |         |         |           |            |                |           |            |        |
| <ul> <li>summer are a high priority in reducing CO<sub>2</sub> and X = the number of degrees a thermostat is set below the recommended 78 degrees</li> <li>CO<sub>2</sub> equivalents into the atmosphere. Toward that end, the City of Austin recommends setting thermostats to 78 degrees for air conditioning. Describe the distribution:</li> <li>Shape:</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |         |         |           |            |                |           |            |        |
| <ul> <li>Summer are a high phonty in reducing CO<sub>2</sub> and CO<sub>2</sub> equivalents into the atmosphere. Toward that end, the City of Austin recommends setting thermostats to 78 degrees for air conditioning. Describe the distribution: <ul> <li>Shape:</li></ul></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |         | . ,     |           |            |                |           |            |        |
| <ul> <li>shape:</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                    |         |         |           |            |                |           |            |        |
| <ul> <li>Shape:</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                    |         |         | -         |            | ecomr          | nends     | setting    | 9      |
| <ul> <li>Center:</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | thermostats to 78 degrees for air conditioning. De | escribe | the d   | istribut  | tion:      |                |           |            |        |
| <ul> <li>Center:</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                    |         |         |           |            |                |           |            |        |
| Spread:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                                  |         |         |           |            |                |           |            |        |
| Would you recommend an advertising campaign to encourage citizens to set their thermostats to a higher temperature? Justify your answer using the probability distribution The majority of citizens have their thermostats set a least below the recommended degrees. This can be supported by the of being clearly in the degree setting. Also, the probability that a selected household has their thermostat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    |         |         |           |            |                |           |            |        |
| higher temperature? Justify your answer using the probability distribution The majority of citizens have their thermostats set a least below the recommended degrees. This can be supported by the of of being clearly in the degree setting. Also, the probability that a selected household has their thermostat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                    |         |         |           |            | 1 .            | · .1      |            |        |
| citizens have their thermostats set a least below the recommended degrees.<br>This can be supported by the of being clearly in the degree<br>setting. Also, the probability that a selected household has their thermostat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                    |         | -       |           |            |                |           |            |        |
| This can be supported by the of being clearly in the degree setting. Also, the probability that a selected household has their thermostat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | • • • • •                                          | •       | -       |           |            |                |           | -          | -      |
| setting. Also, the probability that a selected household has their thermostat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                    |         |         |           |            |                |           |            |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    |         |         |           |            |                |           |            |        |
| set at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |         |         |           |            |                | s their   | therm      | ostat  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | set at Is                                          |         |         |           |            | ·              |           |            |        |



| What Should We Take Away?                                       |         |
|-----------------------------------------------------------------|---------|
| A complete description of a probability distribution requires,, |         |
| and                                                             |         |
| Conclusions may be drawn about the                              | using a |
| probability                                                     | -       |

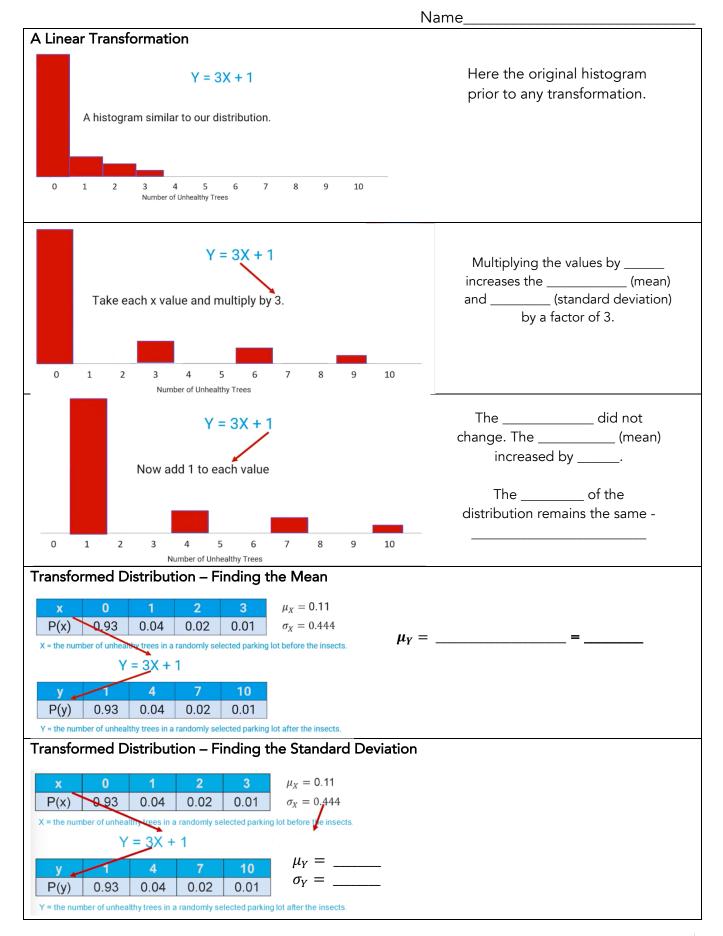


## AP Statistics CED 4.8 Daily Video 1 (Skill 3.B)

| Mean and Standard Deviation of Ra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ndon     | n Varia     | ables      |             |           |            |             |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------|------------|-------------|-----------|------------|-------------|--------|
| What Will We Learn?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |             |            |             |           |            |             |        |
| How can we calculate the parameters of a di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | screte   | randon      | n variak   | oles?       |           |            |             |        |
| How should we interpret the parameters?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |             |            |             |           |            |             |        |
| Prairie Dogs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |             |            |             |           |            |             |        |
| Prairie dogs are keystone species. That                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Х        | 1           | 2          | 3           | 4         | 5          | 6           | 7      |
| means they are disproportionately                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P(x)     | 0.15        | 0.38       | 0.27        | 0.11      | 0.05       | 0.03        | 0.01   |
| important to their ecosystem. Many other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Γ(Λ)     | 0.15        | 0.00       | 0.27        | 0.11      | 0.00       | 0.05        | 0.01   |
| species of plants and animals would suffer w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rithout  | them. F     | Prairie d  | dogs o      | nly mat   | te once    | a year      | . The  |
| number of pups in a randomly selected litter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |             |            |             |           |            |             |        |
| distribution.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |             |            |             |           |            |             |        |
| Prairie Dogs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |             |            |             |           |            |             |        |
| First, <u>always</u> define the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |             |            |             |           |            |             |        |
| X = the of pups in a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |             |            |             | rairie c  | log litte  | er.         |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |             |            |             |           |            |             |        |
| Mean of a Probability Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | X = the nι  | Imber of p | oups in a r | andomly   | selected p | orairie dog | litter |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | X           | 1          | 2           | 3         | 4 5        | 6           | 7      |
| $\mu_X = \sum x_i \cdot P(x_i)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | P(x)        | 0.15       | 0.38 0      | .27 0.    | 11 0.0     | 0.03        | 3 0.01 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |             |            |             |           |            |             |        |
| Expected<br>Value Value The sum Each Individual The probability<br>with each x value |          | The fo      | ormula     | takes i     | nto aco   | count th   | ne          |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |             |            |             | weigh     | ts of ea   | h           |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |             |            |             | •         |            |             |        |
| Copy the work for finding the mean of a pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | bability | / distrik   | oution:    |             |           |            |             |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |             |            |             |           |            |             |        |
| =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |             |            |             |           |            |             |        |
| Interpret the Mean (Expected Value)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |             |            |             |           |            |             |        |
| X = The number of pups in a randomly selec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ted pr   | airie do    | g litter   |             |           |            |             |        |
| $\mu_x =$ ; How could we 2.66 pups per litter? That is not possible.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |             |            |             |           |            |             | Э.     |
| In the, if prairie dog litters are randomly selected, the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |             |            |             |           |            |             |        |
| number of pups per litter will                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |             |            |             |           |            |             |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |             |            |             |           |            |             |        |
| Standard Deviation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | X = the nu  | umber of r | oups in a i | andomly   | selected r | orairie doo | litter |
| $\sum$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |             |            |             | -         | 4 5        |             | 7      |
| $\sigma_X = \sum_{X} (x_i - \mu_X)^2 \cdot P(x_i)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |             |            | 0.38 0      |           | 11 0.0     |             |        |
| N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |             | .66 pups   |             | ,         |            |             |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | <i>FX</i> 2 | oo pupo    |             |           |            |             |        |
| $\sigma_X =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |             |            |             |           | =          |             |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |             |            |             |           |            |             |        |
| Interpreting the Standard Deviation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |             |            |             |           |            |             |        |
| What does the standard deviation mean?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |             |            |             |           |            |             |        |
| The of prairie dog pups i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | is       |             |            | selecte     | ed litter | rs will _  |             |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | 1 1         |            |             |           |            |             |        |
| vary from the of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | by abc      | out        |             |           | ·          |             |        |
| vary from the of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | бу абс      | out        |             |           | ·          |             |        |
| vary from the of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | бу абс      | out        |             |           |            |             | IEDIC  |

Name\_\_\_\_\_

|                                                                                                        | Name                         |                 |                 |                 |  |  |  |
|--------------------------------------------------------------------------------------------------------|------------------------------|-----------------|-----------------|-----------------|--|--|--|
| Variance                                                                                               |                              |                 |                 |                 |  |  |  |
| Remember: The standard deviation is the                                                                |                              | of the          |                 | ·               |  |  |  |
| Then the is $\sigma_x^2 = \Sigma$                                                                      | $(x_i - \mu_x)^2 \cdot P(x)$ | $(x_i)$         |                 |                 |  |  |  |
| Renter's Insurance                                                                                     |                              |                 |                 |                 |  |  |  |
| An insurance company offers renter's insurance for apartment dwellers. A typical \$25,000 policy costs |                              |                 |                 |                 |  |  |  |
| \$150 per year and pays for loss due to fire and theft/vandalism. The average payout for               |                              |                 |                 |                 |  |  |  |
| theft/vandalism is \$3,000 and has a probability                                                       | / of 0.0097 of               | happening. A    | first usually   | pays out the    |  |  |  |
| entire \$25,000 due to a complete loss of prope                                                        | erty. But for th             | ne most part,   | 99% of the ti   | me, there is no |  |  |  |
| claim filed. Construct a probability distribution                                                      | to represent t               | the insurance   | company's p     | rofit for this  |  |  |  |
| type of policy.                                                                                        | X = the insurance            | e company profi | t on a randomly | selected policy |  |  |  |
|                                                                                                        |                              | No oloim        | Theft or        | Fire            |  |  |  |
| Let the random variable X represent the                                                                |                              | No claim        | vandalism       | Fire            |  |  |  |
| insurance company's profit on a randomly                                                               | x                            | \$150           | -\$2850         | -\$24850        |  |  |  |
| selected policy.                                                                                       | P(x)                         | 0.99            | 0.0097          | 0.0003          |  |  |  |
| Calculate and interpret the expected profit of                                                         | the insurance                | company         |                 |                 |  |  |  |
| Calculate and interpret the expected profit of                                                         |                              | company.        |                 |                 |  |  |  |
| $\mu_x = E(X) = \_$                                                                                    |                              |                 | _ =             |                 |  |  |  |
| The insurance company can to                                                                           | make,                        |                 | , about         | per             |  |  |  |
| renter's policy from a                                                                                 | of rar                       | ndomly select   | ed policies.    | ·               |  |  |  |
|                                                                                                        |                              |                 |                 |                 |  |  |  |
| What Should We Take Away?                                                                              |                              |                 |                 |                 |  |  |  |
| The and                                                                                                | of a                         |                 | random varia    | able can be     |  |  |  |
| calculated using the formulas:                                                                         |                              | Γ               |                 |                 |  |  |  |
| $\mu_X = E(X) = \sum x_i \cdot P(x_i)  \sigma_X = \sqrt{\sum (x_i - \mu_X)^2 \cdot P(x_i)}$            |                              |                 |                 |                 |  |  |  |
| Interpretations of parameters of random varial                                                         | bles should us               | se              |                 | and             |  |  |  |
| include of a specified po                                                                              |                              |                 |                 |                 |  |  |  |
|                                                                                                        | -                            |                 |                 |                 |  |  |  |




## AP Statistics CED 4.9 Daily Video 1 (Skill 3.C)

Combining Random Variables

| What Will We Learn?                                                                                                                                                                                                                        |                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| How does a linear transformation affect the mean of a random va                                                                                                                                                                            |                                                                                       |
| How does a linear transformation affect the standard deviation of                                                                                                                                                                          | a random variable?                                                                    |
| Parking Lot Trees                                                                                                                                                                                                                          |                                                                                       |
| The city of Austin requires businesses with parking lots to plant tr                                                                                                                                                                       |                                                                                       |
| other requirements, the code states that no parking space can be                                                                                                                                                                           | e more than 50 feet from a tree. In a                                                 |
| large retail parking lot, this means developers must create tree is                                                                                                                                                                        | ands throughout the parking area.                                                     |
| Unhealthy Trees                                                                                                                                                                                                                            |                                                                                       |
| One of the tasks of the Urban Forester is to randomly check the h                                                                                                                                                                          | ealth of parking lot trees and report                                                 |
| how many trees have died or have a disease. Most trees are well                                                                                                                                                                            | taken care of due to the fines                                                        |
| associated with losing trees.                                                                                                                                                                                                              |                                                                                       |
| Let X represent the number in a rand                                                                                                                                                                                                       | lomly selected parking lot. The                                                       |
| distribution of X can be modeled with a                                                                                                                                                                                                    |                                                                                       |
|                                                                                                                                                                                                                                            |                                                                                       |
| Probability Distribution                                                                                                                                                                                                                   |                                                                                       |
| Calculate the mean and standard deviation of X.                                                                                                                                                                                            | 0         1         2         3           0.93         0.04         0.02         0.01 |
|                                                                                                                                                                                                                                            | mber of unhealthy trees in a randomly selected parking lot                            |
|                                                                                                                                                                                                                                            | not of uniteduly trees in a randomly selected parking for                             |
| $\mu_x = \sum x_i \cdot P(x_i) = \_\_\_\_= \_\_\_$                                                                                                                                                                                         |                                                                                       |
|                                                                                                                                                                                                                                            |                                                                                       |
| $\sigma_x = \sqrt{\sum (x_i - \mu_x)^2 \cdot P(x_i)}$                                                                                                                                                                                      |                                                                                       |
| $\nabla_x  \nabla \Sigma(x_1  \mu_x) = (x_1)$                                                                                                                                                                                              |                                                                                       |
| =                                                                                                                                                                                                                                          | =                                                                                     |
| Probability Distribution                                                                                                                                                                                                                   | 8                                                                                     |
| $\mu_x = $ ; We have the center a                                                                                                                                                                                                          | and the spread                                                                        |
| let's make a histogram to see the shape.                                                                                                                                                                                                   | and the spread,<br>Skewed<br>right                                                    |
|                                                                                                                                                                                                                                            | right                                                                                 |
| From the histogram, we can see that the distribution is                                                                                                                                                                                    | - AD                                                                                  |
|                                                                                                                                                                                                                                            |                                                                                       |
|                                                                                                                                                                                                                                            | 6                                                                                     |
|                                                                                                                                                                                                                                            | 0 1 2 3 4<br>Number of Unhealthy Trees                                                |
| Transforming Data                                                                                                                                                                                                                          |                                                                                       |
|                                                                                                                                                                                                                                            |                                                                                       |
| Suppose a disease-spreading insect has infested many trees thro                                                                                                                                                                            | ughout the city. The effect on the                                                    |
| Suppose a disease-spreading insect has infested many trees thro                                                                                                                                                                            | •                                                                                     |
|                                                                                                                                                                                                                                            | •                                                                                     |
| Suppose a disease-spreading insect has infested many trees thro<br>number of unhealthy trees can be modeled by the random variab                                                                                                           | ble $Y = 3X + 1$ , where:                                                             |
| Suppose a disease-spreading insect has infested many trees thro                                                                                                                                                                            | ble $Y = 3X + 1$ , where:                                                             |
| Suppose a disease-spreading insect has infested many trees thro<br>number of unhealthy trees can be modeled by the random variab<br>X = the number of in a<br>the insect infestation.                                                      | le Y = 3X + 1, where:<br>selected parking lot                                         |
| Suppose a disease-spreading insect has infested many trees thro<br>number of unhealthy trees can be modeled by the random variab<br>X = the number of in a<br>the insect infestation.<br>Y = the number of in a                            | le Y = 3X + 1, where:<br>selected parking lot                                         |
| Suppose a disease-spreading insect has infested many trees thro<br>number of unhealthy trees can be modeled by the random variab<br>X = the number of in a<br>the insect infestation.                                                      | le Y = 3X + 1, where:<br>selected parking lot                                         |
| Suppose a disease-spreading insect has infested many trees thro<br>number of unhealthy trees can be modeled by the random variab<br>X = the number of in a<br>the insect infestation.<br>Y = the number of in a<br>the insect infestation. | ole Y = 3X + 1, where:<br>selected parking lot<br>selected parking lot                |
| Suppose a disease-spreading insect has infested many trees thro<br>number of unhealthy trees can be modeled by the random variab<br>X = the number of in a<br>the insect infestation.<br>Y = the number of in a                            | ole Y = 3X + 1, where:<br>selected parking lot<br>selected parking lot                |

+ STATS MEDIC





| Ν | а | m | ۱ | е        |
|---|---|---|---|----------|
|   | u |   |   | <u> </u> |



# AP Statistics CED 4.9 Daily Video 2 (Skill 3.B) Combining Random Variables

| Combining Random Varia                                                                                                | oles                                                       |                                                                       |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------|--|--|--|--|
| What Will We Learn?                                                                                                   |                                                            |                                                                       |  |  |  |  |
| How do we find the mean of a li                                                                                       | near combination of two                                    | o random variables?                                                   |  |  |  |  |
| How do we find the standard de                                                                                        | viation of a linear combi                                  | ination of two random variables?                                      |  |  |  |  |
| How do we determine independ                                                                                          | lence of two random var                                    | riables.                                                              |  |  |  |  |
| Gas and Hybrids                                                                                                       |                                                            |                                                                       |  |  |  |  |
| -                                                                                                                     | es online in a rural area r                                | records the number of cars sold each day.                             |  |  |  |  |
| The data for gas cars and hybric                                                                                      |                                                            | -                                                                     |  |  |  |  |
|                                                                                                                       |                                                            |                                                                       |  |  |  |  |
| Let G =                                                                                                               |                                                            |                                                                       |  |  |  |  |
|                                                                                                                       |                                                            |                                                                       |  |  |  |  |
| Let H =                                                                                                               |                                                            |                                                                       |  |  |  |  |
|                                                                                                                       |                                                            |                                                                       |  |  |  |  |
| Random variable G and H can e                                                                                         | ach be represented by a                                    |                                                                       |  |  |  |  |
| Car Sales                                                                                                             | · · · · · · · · · · · · · · · · · · ·                      |                                                                       |  |  |  |  |
| G = the number of gas cars so                                                                                         | ld on a randomly selected day                              | H = the number of hybrid cars sold on a randomly selected day         |  |  |  |  |
| G 2 3 4                                                                                                               |                                                            | H 0 1 2                                                               |  |  |  |  |
| P(G) 0.07 0.22 0.48                                                                                                   | 0.18 0.05                                                  | P(H) 0.81 0.13 0.06                                                   |  |  |  |  |
| Finding the Mean of a Sum                                                                                             |                                                            |                                                                       |  |  |  |  |
|                                                                                                                       | G = the number of gas cars sold<br>a randomly selected day | l on H = the number of hybrid cars<br>sold on a randomly selected day |  |  |  |  |
|                                                                                                                       | $\mu_G = 3.92$ $\sigma_G = 0.94$                           | $\mu_{H} = 0.25$ $\sigma_{H} = 0.56$                                  |  |  |  |  |
|                                                                                                                       |                                                            |                                                                       |  |  |  |  |
| Let $T = G + H$ . What is the mear                                                                                    | n of T?                                                    |                                                                       |  |  |  |  |
|                                                                                                                       |                                                            |                                                                       |  |  |  |  |
| So, the formula is as simple as                                                                                       | the two me                                                 | eans. $\mu_T = \mu_{G+H} = \mu_G + \mu_H$                             |  |  |  |  |
|                                                                                                                       |                                                            |                                                                       |  |  |  |  |
| Let $D = G - H$ . What is the mear                                                                                    | n of D?                                                    |                                                                       |  |  |  |  |
|                                                                                                                       |                                                            |                                                                       |  |  |  |  |
| So, the formula is as simple as _                                                                                     | the two                                                    | means. $\mu_D = \mu_{G-H} = \mu_G - \mu_H$                            |  |  |  |  |
| The company keep track of the                                                                                         |                                                            |                                                                       |  |  |  |  |
|                                                                                                                       |                                                            |                                                                       |  |  |  |  |
| number of gas cars sold and the number of hybrid cars sold on a randomly selected day.<br>Independent Random Variable |                                                            |                                                                       |  |  |  |  |
| -                                                                                                                     | r of gas cars sold on a ra                                 | andomly selected day by the online company                            |  |  |  |  |
|                                                                                                                       | -                                                          | bution of H? seems like a                                             |  |  |  |  |
| reasonable answer. So, G and H                                                                                        | -                                                          |                                                                       |  |  |  |  |
|                                                                                                                       |                                                            |                                                                       |  |  |  |  |
| Two random variables are                                                                                              | ifknow                                                     | ving information about one of them does                               |  |  |  |  |
|                                                                                                                       | distribution of the othe                                   |                                                                       |  |  |  |  |
| Finding the Standard Deviation                                                                                        |                                                            |                                                                       |  |  |  |  |
| If two random variables X and Y                                                                                       | are independent then t                                     | • $\sigma_{X-Y}^2 = \sigma_X^2 + \sigma_Y^2$                          |  |  |  |  |
| standard deviation we must first                                                                                      |                                                            | • $\sigma^2 - \sigma^2 + \sigma^2$                                    |  |  |  |  |
| For a sum or difference of indep                                                                                      |                                                            |                                                                       |  |  |  |  |
|                                                                                                                       |                                                            |                                                                       |  |  |  |  |
| Note that standard deviations _                                                                                       |                                                            | ;                                                                     |  |  |  |  |
|                                                                                                                       |                                                            | 📥 STATS MEDIC                                                         |  |  |  |  |
|                                                                                                                       |                                                            |                                                                       |  |  |  |  |

Name\_\_\_\_\_

Name Standard Deviation of a Sum G = the number of gas cars sold on H = the number of hybrid cars a randomly selected day sold on a randomly selected day  $\mu_G = 3.92$   $\sigma_G = 0.94$  $\mu_H = 0.25 \quad \sigma_H = 0.56$ Let T = G + H. What is the standard deviation of T? Because G and T are independent random variables:  $\sigma_T = \_\_\_ =$ Standard Deviation for a G = the number of gas cars sold on<br/>a randomly selected dayH = the number of hybrid cars<br/>sold on a randomly selected day Difference  $\mu_G = 3.92$   $\sigma_G = 0.94$   $\mu_H = 0.25$   $\sigma_H = 0.56$ Let D = G - H. What is the standard deviation of D? Because G and T are independent random variables:  $\sigma_D^2 = \sigma_G^2 + \sigma_H^2 \qquad = \underline{\qquad}$  $\sigma_T = \_$ Linear Combinations For any two random variables X and Y, and real numbers a and b, the expression aX +bY is called a linear combination of X and Y. Mean =  $a\mu_x + b\mu_x$ ; If X and Y are independent: Standard deviation: \_\_\_\_\_ Holiday Sale G = the number of gas cars sold on H = the number of hybrid cars a randomly selected day sold on a randomly selected day The online company awards 2 points  $\mu_G = 3.92$   $\sigma_G = 0.94$  $\mu_H=0.25 \quad \sigma_H=0.56$ for each gas car sold and 3 points for each hybrid car sold to its manager. Calculate the mean and standard deviation of the total points awarded to the regional manager on a randomly selected day. 2G + 3H =  $\mu_{2G+3H} = \_\_\_\_= \_\_\_= \_\_\_$  $\sigma_T = =$ What Should We Take Away? For independent random variables X and Y and real number a and b: the mean of \_\_\_\_\_\_ = \_\_\_\_\_ the standard deviation of \_\_\_\_\_ = \_\_\_\_ Two random variables are \_\_\_\_\_\_ of them does \_\_\_\_\_ change the probability distribution of the other.



| Name |
|------|
|------|

### AP Statistics CED 4.10 Daily Video 1 (Skill 3.A)

Introduction to the Binomial Distribution

| What Will We Learn?                           |                                 |                                            |
|-----------------------------------------------|---------------------------------|--------------------------------------------|
| How can we recognize a binom                  |                                 |                                            |
| How do we calculate a probabi                 | ity for a binomial distributi   | on?                                        |
| Weather                                       |                                 |                                            |
| The weather has many example                  | s of binomial settings. (Wa     | tch video!)                                |
| Binomial Setting                              |                                 |                                            |
| A binomial setting involves                   | trials of a ran                 | dom process, where the following           |
| conditions are met:                           |                                 |                                            |
|                                               |                                 |                                            |
|                                               | _ of the same random pro        | cess.                                      |
| • A                                           |                                 |                                            |
| • Each has t                                  | he                              | of success, p                              |
| Checking Binomial Conditions                  |                                 |                                            |
| The probability a tropical storm              | becomes a hurricane is 0.       | 53. If the weather service predicts 6 more |
| tropical storms, what is the prob             | pability that exactly 5 of the  | em become hurricanes?                      |
| Check the conditions:                         |                                 |                                            |
| Two outcomes:                                 |                                 |                                            |
| <ul> <li>Independent trials:</li> </ul>       |                                 |                                            |
|                                               |                                 |                                            |
| <ul> <li>A fixed number of trials:</li> </ul> |                                 |                                            |
| Each trial has the                            | probability of succ             | ess:                                       |
| We have met the conditions an                 | d we have a                     | distribution.                              |
| X =                                           |                                 |                                            |
| Binomial Distributions                        |                                 |                                            |
| ln a                                          | _, the random variable X =      | the number of successes is called the      |
|                                               |                                 | The probability distribution of X is a     |
|                                               | ·                               |                                            |
| How can we find probabilities ir              | nvolving a binomial randor      | n variable?                                |
| • Use                                         |                                 |                                            |
| Use the                                       | formula to                      | calculate probabilities.                   |
| The probability of getting exact              | ly P(Y                          | $(x) = \binom{n}{r} p^{x} (1-p)^{x}$       |
| in                                            | trials is:                      | (x) = (x) = (x) p (1 - p)                  |
| Calculating Binomial Probabiliti              |                                 |                                            |
| The probability a tropical storm              | becomes a hurricane is 0.       | 53. If the weather service predicts 6 more |
| tropical storms, what is the prob             | pability that exactly 5 of the  | em become hurricanes?                      |
| <u>Define the random variable</u> : X =       |                                 |                                            |
| Identify the distribution and val             | <u>ues of interest:</u> X has a | with                                       |
| n = and p =                                   | We want to find P(X =5          | )                                          |
|                                               |                                 |                                            |
| P (X = 5) =                                   | =                               |                                            |
| Answer the question in context:               | The probability that            | 5 of the 6 tropical storms will            |
| become hurricanes is                          | ·                               |                                            |
|                                               |                                 |                                            |
|                                               |                                 | 📥 STATS MEDIC                              |

| Cumulative Binomial Probabilities                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The probability a tropical storm becomes a hurricane is 0.53. If the weather service predicts 22                                                                                          |
| tropical storms, what is the probability that at least 15 of them become hurricanes?                                                                                                      |
| Define the random variable: X =                                                                                                                                                           |
| Identify the distribution and vale of interest: X has a binomial distribution with and                                                                                                    |
| We want to find P(X =)                                                                                                                                                                    |
| Find the probability: $P(X \ge 16) = $                                                                                                                                                    |
| Answer the question in context: The probability that tropical storms will                                                                                                                 |
| become hurricanes is                                                                                                                                                                      |
|                                                                                                                                                                                           |
| Using Technology                                                                                                                                                                          |
| Most calculators used in AP Statistics have built-in commands for calculating binomial probabilities.                                                                                     |
| However, we don't recommend writing "calculator speak" in free-response solutions.                                                                                                        |
| , , , , , , , , , , , , , , , , , , , ,                                                                                                                                                   |
| X has a binomial distribution with and We want to find $P(X = 5)$ .                                                                                                                       |
| $P(X = 5) = \binom{6}{5} 0.53^5 (1 - 0.53)^1 = 0.118$                                                                                                                                     |
| P(X = 5) = =                                                                                                                                                                              |
| X has a binomial distribution with and We want to find P(X $\ge$ 16).<br>P(X $\ge$ 16) = $\binom{22}{16} 0.53^{16} (1 - 0.53)^6 + \dots + \binom{22}{22} 0.53^{22} (1 - 0.53)^0 = 0.0486$ |
| $P(X \ge 16) = \_ = \_ = \_$                                                                                                                                                              |
| What Should We Take Away?                                                                                                                                                                 |
| A of the same process,                                                                                                                                                                    |
| where these conditions are met:                                                                                                                                                           |
|                                                                                                                                                                                           |
| Two possible outcomes:                                                                                                                                                                    |
| •trials                                                                                                                                                                                   |
| A of trials                                                                                                                                                                               |
| Each trial has the                                                                                                                                                                        |
| The binomial probability formula:                                                                                                                                                         |
| When calculating , be sure to the random variable                                                                                                                                         |
| When calculating         the random variable,            the distribution and values of interest,         the correct probability,                                                        |
| and answer the question,                                                                                                                                                                  |
| and anower the question,                                                                                                                                                                  |



#### AP Statistics CED 4.11 Daily Video 1 (Skill 3.B)

Parameters for a Binomial Distribution

| What Will We Learn?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| How do we calculate the mean of a binomial distribution?                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| How do we calculate the standard deviation of a binomial distribution?                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Cell Phone Disaster                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Awwww. You dropped your phone and cracked the screen. Will you get it fixed? The Miami Herald                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| estimates that over 5,700 cell phone screens are cracked every hour in the United States.                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Quick Fix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| An enterprising group of high school students calling themselves Better than a Bandage (BTB), is                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| researching methods and materials to provide a quick on-the-spot fix to repair cracked cell phone                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| screens.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Mean of a Binomial Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| According to Digital Trends, 21% of cell phone owners have a cracked screen. If the BTB team                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| randomly selects 40 people who own cell phones, what is the expected number of cracked screens?                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Define the random variable: C =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Always check the conditions: Two Outcomes? Independent Trials? Fixed # Trials? Same Probability?                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| So, C has a with n = and p =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| The (Expected Value) of a random variable X is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| So, = =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| In random samples of cell phones owners, the BTB team can                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| an average of to have a cracked cell phone screen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Standard Deviation of Binomial Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| The of a binomial random variable X is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| So, = =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| In random samples of cell phone owners, the with cracked                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| phones will by about                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Calculate the Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| The BTB team has set up a booth at a large outdoor shopping area with enough supplies to fix 25                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| The BTB team has set up a booth at a large outdoor shopping area with enough supplies to fix 25 phone screens. Recent experience has shown that 15% of people have a cracked cell phone screen                                                                                                                                                                                                                                                                                                                                        |
| The BTB team has set up a booth at a large outdoor shopping area with enough supplies to fix 25 phone screens. Recent experience has shown that 15% of people have a cracked cell phone screen and will buy a repair. The team plans to approach a random sample of 150 people about screen                                                                                                                                                                                                                                           |
| The BTB team has set up a booth at a large outdoor shopping area with enough supplies to fix 25 phone screens. Recent experience has shown that 15% of people have a cracked cell phone screen                                                                                                                                                                                                                                                                                                                                        |
| The BTB team has set up a booth at a large outdoor shopping area with enough supplies to fix 25 phone screens. Recent experience has shown that 15% of people have a cracked cell phone screen and will buy a repair. The team plans to approach a random sample of 150 people about screen repair. Would you be surprised if the BTB team ran out of supplies? Justify your answer.                                                                                                                                                  |
| The BTB team has set up a booth at a large outdoor shopping area with enough supplies to fix 25 phone screens. Recent experience has shown that 15% of people have a cracked cell phone screen and will buy a repair. The team plans to approach a random sample of 150 people about screen repair. Would you be surprised if the BTB team ran out of supplies? Justify your answer.                                                                                                                                                  |
| The BTB team has set up a booth at a large outdoor shopping area with enough supplies to fix 25 phone screens. Recent experience has shown that 15% of people have a cracked cell phone screen and will buy a repair. The team plans to approach a random sample of 150 people about screen repair. Would you be surprised if the BTB team ran out of supplies? Justify your answer.          Define the random variable:         Check the conditions:                                                                               |
| The BTB team has set up a booth at a large outdoor shopping area with enough supplies to fix 25 phone screens. Recent experience has shown that 15% of people have a cracked cell phone screen and will buy a repair. The team plans to approach a random sample of 150 people about screen repair. Would you be surprised if the BTB team ran out of supplies? Justify your answer.          Define the random variable:         Check the conditions:         Two Outcomes?       ; Independent Trials?         ; Same Probability? |
| The BTB team has set up a booth at a large outdoor shopping area with enough supplies to fix 25 phone screens. Recent experience has shown that 15% of people have a cracked cell phone screen and will buy a repair. The team plans to approach a random sample of 150 people about screen repair. Would you be surprised if the BTB team ran out of supplies? Justify your answer.  Define the random variable: <u>Check the conditions:</u> Two Outcomes?; Independent Trials?; Fixed Number of Trials? <u>State n and p:</u>      |
| The BTB team has set up a booth at a large outdoor shopping area with enough supplies to fix 25 phone screens. Recent experience has shown that 15% of people have a cracked cell phone screen and will buy a repair. The team plans to approach a random sample of 150 people about screen repair. Would you be surprised if the BTB team ran out of supplies? Justify your answer.          Define the random variable:                                                                                                             |
| The BTB team has set up a booth at a large outdoor shopping area with enough supplies to fix 25 phone screens. Recent experience has shown that 15% of people have a cracked cell phone screen and will buy a repair. The team plans to approach a random sample of 150 people about screen repair. Would you be surprised if the BTB team ran out of supplies? Justify your answer.  Define the random variable:  Check the conditions: Two Outcomes?; Independent Trials?; Fixed Number of Trials?  State n and p:                  |



|                                                                                        | Name                                               |  |  |
|----------------------------------------------------------------------------------------|----------------------------------------------------|--|--|
| Interpret Your Results                                                                 |                                                    |  |  |
| Would you be surprised if the BTB team ran out o                                       | of supplies early?                                 |  |  |
|                                                                                        |                                                    |  |  |
| , I would be surprised if the _                                                        | ran out of supplies early. Just                    |  |  |
| above the m                                                                            | ean is customers                                   |  |  |
| with cracked screens who would pay for a repair.                                       | That would require supplies than                   |  |  |
| BTB brought with them since they only brought s                                        | upplies for                                        |  |  |
| Another Approach                                                                       |                                                    |  |  |
| Would you be surprised if the BTB team ran out o                                       | of supplies early?                                 |  |  |
|                                                                                        |                                                    |  |  |
| You could use the                                                                      | to actually calculate the binomial probability     |  |  |
| that $C > 25$ . (You could do this by hand or using                                    |                                                    |  |  |
|                                                                                        |                                                    |  |  |
| P(C > 25) =                                                                            |                                                    |  |  |
| , I would be surprised if the _                                                        | ran out of supplies early. The                     |  |  |
| probability that of a random                                                           | nly selected group of would                        |  |  |
| purchase screen repair is That is a                                                    | a high enough probability to warrant bringing more |  |  |
| supplies.                                                                              |                                                    |  |  |
|                                                                                        |                                                    |  |  |
| What Should We Take Away?                                                              |                                                    |  |  |
|                                                                                        |                                                    |  |  |
| The of a random variable X with a                                                      | distribution is                                    |  |  |
|                                                                                        |                                                    |  |  |
| The of a random v                                                                      | variable X with a distribution                     |  |  |
| is                                                                                     |                                                    |  |  |
|                                                                                        |                                                    |  |  |
| Probabilities and parameters for a binomial distribution should be interpreted use the |                                                    |  |  |
| of a specific situation.                                                               |                                                    |  |  |



## AP Statistics CED 4.12 Daily Video 1 (Skill 3.A)

The Goo

| What Will We Learn?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| How do we calculate probabilities for a geometric random variable?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| How do we calculate the parameters for a geometric distribution?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Developing Hurricanes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| In 2020, NOAA updated their prediction to 41% of tropical storms will become hurricanes. A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| hurricane is defined as a storm with sustained wind speed of at least 74 mph. What is the probability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| that the fourth tropical storm of the season will be the first hurricane?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Define the random variable:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Check the conditions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| *Two possible outcomes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| * trials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| * Each trial has the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| * Perform trials until we have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <u>State:</u> H has a with p =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Finding Geometric Probabilities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $P(H = 4) = ( \_ )( \_ )( \_ )( \_ )( \_ ) = \_$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Failure Success                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| For a geometric random variable X,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Cumulative Geometric Probabilities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| In 2020, NOAA updated their prediction to 41% of tropical storms will become hurricanes. A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| hurricane is defined as a storm with sustained wind speed of at least 74 mph. What is the probability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| that the first hurricane will develop by the third tropical storm of the season?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Define the random variable:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Check the conditions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Check the conditions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| *Two possible outcomes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| *Two possible outcomes:<br>* trials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| *Two possible outcomes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| *Two possible outcomes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| *Two possible outcomes:<br>* trials<br>* Each trial has the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <pre>*Two possible outcomes:</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| *Two possible outcomes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| *Two possible outcomes: trials<br>* trials triads triads triads triads |
| *Two possible outcomes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| *Two possible outcomes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |



| Finding the Mean                                                                                           |  |  |  |
|------------------------------------------------------------------------------------------------------------|--|--|--|
| In 2020, NOAA updated their prediction to 41% of tropical storms will become hurricanes. A                 |  |  |  |
| hurricane is defined as a storm with sustained wind speed of at least 74 mph. What is the mean             |  |  |  |
| number of tropical storms in a season it will take to get the first hurricane?                             |  |  |  |
|                                                                                                            |  |  |  |
| Define the random variable: Let H =                                                                        |  |  |  |
| State: H has a                                                                                             |  |  |  |
| The (expected value) of a geometric random variable X is                                                   |  |  |  |
| Calculate: $\mu_H = \_\_\_\_= \_\_\_$                                                                      |  |  |  |
| Over seasons, we expect that it will take tropical storms,, to                                             |  |  |  |
| get the first hurricane.                                                                                   |  |  |  |
| Finding the Standard Deviation                                                                             |  |  |  |
| In 2020, NOAA updated their prediction to 41% of tropical storms will become hurricanes. A                 |  |  |  |
| hurricane is defined as a storm with sustained wind speed of at least 74 mph. What is the standard         |  |  |  |
| deviation of the number of tropical storms in a season it will take to get the first hurricane?            |  |  |  |
|                                                                                                            |  |  |  |
| Define the random variable: Let H =                                                                        |  |  |  |
| State: H has a with                                                                                        |  |  |  |
| The of a geometric random variables X is                                                                   |  |  |  |
| Calculate: $\sigma_H = \_\_\_\_= \_\_\_$                                                                   |  |  |  |
| Over seasons, the number of tropical storms it will take to get the hurricane                              |  |  |  |
| will by about storms from the storms.                                                                      |  |  |  |
| Prairie Dogs                                                                                               |  |  |  |
| Twenty percent of prairie dog litters have 4 or more pups. A zoologist is interested in studying the       |  |  |  |
| behavior of prairie dog siblings in these large prairie dog families.                                      |  |  |  |
| a) What is the probability the zoologist will need to wait until a fifth litter is born in order to have a |  |  |  |
| large family to study?                                                                                     |  |  |  |
|                                                                                                            |  |  |  |
|                                                                                                            |  |  |  |
|                                                                                                            |  |  |  |
| b) How many litters should the zoologist expect to be born until there is a large family to study?         |  |  |  |
| by now many inters should the zoologist expect to be born until there is a large furnity to study.         |  |  |  |
|                                                                                                            |  |  |  |
|                                                                                                            |  |  |  |
|                                                                                                            |  |  |  |
| What Should We Take Away?                                                                                  |  |  |  |
| A random variable counts the number of trials it take to get the                                           |  |  |  |
| success in a setting where,,,,,                                                                            |  |  |  |
| chance process are performed with probability p of success on each trial.                                  |  |  |  |
| The memory is much shifty formula.                                                                         |  |  |  |
| P(X = x)= $(1-p)^{x-1}p$                                                                                   |  |  |  |
| The parameters of a geometric distribution are:                                                            |  |  |  |
| Mean: Standard deviation:                                                                                  |  |  |  |



## AP Statistics CED 4.12 Daily Video 2 (Skill 4.B)

|                                              | Distribution                                                                          |
|----------------------------------------------|---------------------------------------------------------------------------------------|
| What Will We Lear                            | n?                                                                                    |
| How can we disting                           | guish between binomial and geometric distributions?                                   |
| How can we interp                            | ret probabilities and parameters in context?                                          |
| <b>Get Your Supplies</b>                     | Ready                                                                                 |
| <ul> <li>We are going</li> </ul>             | ng to practice a free-response question.                                              |
|                                              | r, a calculator, and a formula sheet close by.                                        |
|                                              | sh to set a timer for 12 minutes.                                                     |
|                                              | next slide come up, hit <b>Pause</b> and work through the problem.                    |
|                                              | are finished, hit <b>Play</b> to see the solution.                                    |
| Major Hurricanes                             |                                                                                       |
|                                              | Category 4, 5, or 6) have sustained windspeeds of at least 111 mph. 22% of            |
|                                              | n into a major hurricane.                                                             |
| Geometric Probab                             | <b>ility</b><br>Isual not to have a major hurricane until the seventh tropical storm? |
|                                              |                                                                                       |
| <b>Finding Means (Ex</b><br>(b) Suppose NOAA | <b>pected Values)</b><br>A predicts 18 tropical storms this year.                     |
| (i) How many m                               | ajor hurricanes should we expect this year?                                           |
|                                              |                                                                                       |
| (ii) How many tr                             | opical storms would we expect to happen to get the first major hurricane?             |
| <b>Cumulative Binom</b><br>(c) Suppose NOAA  |                                                                                       |



| Ν | а | m | ۱e | Ś |
|---|---|---|----|---|
|   |   |   |    |   |

What Should We Take Away?

Carefully check \_\_\_\_\_\_ to distinguish \_\_\_\_\_\_ situations from \_\_\_\_\_\_

\_\_\_\_\_ any random variables.

| Probabilities and parameters for a    | should be interpreted within the |
|---------------------------------------|----------------------------------|
| of a special population or situation. |                                  |

