

$$\begin{aligned} t &= \frac{\overline{x} - \mu_0}{\frac{S}{\sqrt{n}}} \quad \overline{x} \pm t^* \frac{S}{\sqrt{n}} \\ \overline{x} \pm t^* \frac{S}{\sqrt{n}} \\ \overline{x} \pm t^* \frac{S}{\sqrt{n}} \\ z &= \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} \\ \frac{\hat{p} \pm z^* \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}}}{\frac{\hat{p} \pm z^* \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}}}{n} \\ Remember to use p_0 when checking the Large Counts condition! \\ t &= \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \\ \frac{Fro Tip - You can also use 2.5ampTTest on your calculator!}{n} \\ z &= \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\frac{\hat{p}_c(1 - \hat{p}_c)}{n_1} + \frac{\hat{p}_c(1 - \hat{p}_c)}{n_2}}} \\ Reminder: Time saver! Use 2^2 \\ \hat{p}_c &= \frac{X_1 + X_2}{n_1 + n_2} \\ \frac{Fro Tip - You can also use 2.5ampTInt on your calculator!}{n} \\ z &= \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\frac{\hat{p}_c(1 - \hat{p}_c)}{n_1} + \frac{\hat{p}_c(1 - \hat{p}_c)}{n_2}}} \\ Reminder: Time saver! Use 2^2 \\ \hat{p}_c &= \frac{X_1 + X_2}{n_1 + n_2} \\ \frac{From Tip - You can also use 2.5ampTInt on your calculator!}{n} \\ z^2 &= \sum \frac{(observed - expected)^2}{expected}} \\ Sum the components over all categories! \\ \end{array}$$

$t = \frac{b - \beta_0}{SE_b}$	$b \pm t^* SE_b$
Suppose a confidence interval is (A, B). The point estimate is the <u>average</u> of A and B. The point estimate is the exact center of the confidence interval! To find the margin of error, subtract the point estimate from the upper bound of the confidence interval! margin of error = B - (the point estimate)	Confidence intervals are of the form: point estimate \pm margin of error statistic \pm (critical value)(standard error of statistic) Ex: $\overline{x} \pm t^* \frac{s}{\sqrt{n}}$ $\hat{p} \pm z^* \frac{\hat{p}(1-\hat{p})}{n}$
The power of a test is the probability a test will correctly reject the null hypothesis, given the alternative hypothesis is true. Remember! P(Type II error) = 1 - P(power)	A Type I error occurs when the null hypothesis is true and is rejected (false positive). A Type II error occurs when the alternative hypothesis is true and the null hypothesis is not rejected (false negative).
In repeated random sampling with the same sample size, approximately C% of confidence intervals created will capture the <u>population</u> <u>parameter.</u> The population parameter could be: • population proportion • difference in population proportions • population mean • difference in population means • population mean difference	We are C% confident that the confidence interval from to captures the <u>population parameter</u> <u>(in context)</u> . The population parameter could be: • population proportion • difference in population proportions • population mean • difference in population means • population mean difference
When estimating a population parameter, a statistic is unbiased if, the center of the sampling distribution for the statistic is equal to the population parameter.	A <i>P</i> -value is the probability of obtaining a test statistic as extreme or more extreme than the observed test statistic when the null hypothesis is assumed to be true.

Random: Data come from a random sample	Random: Data come from a random sample
10%: When sampling without replacement, <i>n</i> < 10% of the population size	10%: When sampling without replacement, <i>n</i> < 10% of the population size
Large Counts: • Test: $np_0 \ge 10$ and $n(1 - p_0) \ge 10$ • Interval: $n\hat{p} \ge 10$ and $n(1 - \hat{p}) \ge 10$	Normal: Population distribution is normal, large sample ($n \ge 30$), or a dotplot of the sample data shows no strong skewness or outliers.
Random: Data come from independent random samples or 2 groups in a randomized experiment. 10%: when sampling without replacement: n < 10% of the population size for both samples. Large Counts: • Test: $n_1 \hat{p}_c \ge 10$, $n_1(1-\hat{p}_c) \ge 10$, $n_2 \hat{p}_c \ge 10$, $n_2(1-\hat{p}_c) \ge 10$ • Cl: $n_1 \hat{p}_1 \ge 10$, $n_1(1-\hat{p}_1) \ge 10$, $n_2 \hat{p}_2 \ge 10$, $n_2(1-\hat{p}_2) \ge 10$	Random: Data come from independent random samples or 2 groups in a randomized experiment. 10%: when sampling without replacement: $n < 10\%$ of the population size for both samples. Normal: For both populations, either the population distribution is normal, large sample $(n \ge 30)$, or a dotplot of the sample data shows no strong skewness or outliers.
Linear: True relationship between the variables is linear. Independent observations, 10% condition when sampling without replacement Normal: Responses vary normally around the regression line for all <i>x</i> -values Equal Variance around the regression line for all <i>x</i> - values Random: Data from a random sample or randomized experiment	 Random: Data from a random sample, separate random samples, or groups in a randomized experiment. 10%: when sampling without replacement: n < 10% of the population size for all samples. Large Counts: All expected counts must be at least 5.
A parameter is a number that describes the population. Ex: μ , p , σ A statistic is a number that describes the sample. Ex: \bar{x} , \hat{p} , s	 Randomso we can generalize to the population from which the sample was selected. 10% conditionso sampling without replacement is OK and we can use the stated formula for standard deviation. Normal/Large Sampleso the sampling distribution is approximately Normal.
The central limit theorem (CLT) states that when the sample size is sufficiently large, a sampling distribution of the mean of a random variable will be approximately normally distributed.	 The population distribution is the distribution of responses for <i>every individual of the population</i>. The sample distribution is the distribution of responses for a <i>single sample</i>. The sampling distribution is the distribution of values for the statistic for <i>all possible samples</i> of a given size from a given population.

Inference! What calculator function is used for a one-sample <i>t</i> -interval for μ?	Inference! What calculator function is used for a one-sample <i>t</i> -test for <i>µ</i> ?
Inference! What calculator function is used for a one-sample <i>z</i> -interval for <i>p</i> ?	Inference! What calculator function is used for a one-sample <i>z</i> -test for <i>p</i> ?
Inference! What factors affect the width of a confidence interval?	Inference! How do I make a decision based on a <i>P</i> -value?
Inference! What does it mean if we reject (or fail to reject) the null hypothesis?	Inference! What is the probability that a specific confidence interval captures the population parameter?
Inference! How to calculate expected counts in a chi-square test for homogeneity/independence	Inference! How to choose the right inference procedure?

slope $\hat{y} = a + bx$ Interpretation: For every increase of 1 unit in <u>x context</u> , the predicted <u>y context</u> increases/decreases by <u>slope</u> .	y-intercept $\hat{y} = a + bx$ Interpretation: The predicted value of <u>y context</u> when <u>x context</u> is 0 is <u>y-intercept value</u> .
 Correlation, r r is unitless. r is always between -1 and 1. r is greatly affected by regression outliers. If the direction is negative, then r < 0. If the direction is positive, then r > 0. The closer r is to -1 or 1, the stronger the relationship. The closer that r is to 0, the weaker the relationship. 	The coefficient of determination gives the <u>percent</u> of the variation of <u>y-context</u> that is explained by the least-squares regression line using $x = \underline{x-context}$.
Correlation (r) Gives the strength and direction of the linear relationship between 2 quantitative variables. $r \approx 0$ $r \approx 1$ $r \approx 0$ $r \approx 1$ $r \approx 0$ $r \approx 1$	An outlier in regression is a point that does not follow the general trend shown in the rest of the data and has a large residual.
An influential point in regression is any point that, if removed, changes the relationship substantially (creates big changes to slope and/or <i>y</i> -intercept) Outliers and high-leverage points are often influential.	A high-leverage point in regression has a <i>substantially</i> larger or smaller <i>x</i> -value than the other observations have.
A discrete variable can take on a countable number of values. The number of values may be finite or infinite. THINK: Discrete = Countable Ex. Number of students A continuous variable can take on infinitely many values, but those values cannot be counted. THINK: Continuous = Must be measured Ex. Height	A categorical variable takes on values that are category names or group labels. A quantitative variable is one that takes on numerical values for a measured or counted quantity.

Sampling/Experiments! What is a control group? What is the purpose of a control group?	Sampling/Experiments! What is single blind and double blind?
Sampling/Experiments! What are two poor sampling methods?	Sampling/Experiments! Explanatory Variable Response Variable
Sampling/Experiments! Experimental Units Subjects	Sampling/Experiments! Types of Bias
Sampling/Experiments! What is bias?	Sampling/Experiments! Can increasing the sample size correct issues that arose from a biased sampling method?
Sampling/Experiments! Can the results be generalized to a larger population?	Sampling/Experiments! What is the difference between an observational study and an experiment?

 In a single-blind experiment, subjects do not know which treatment they are receiving, but members of the research team do, or vice versa. In a double-blind experiment neither the subjects nor the members of the research team who interact with them know which treatment a subject is receiving. 	 A control group is a collection of experimental units that are either not given a treatment of interest or given a treatment with an inactive substance (placebo). The purpose of a control group is to provide a baseline to which the treatment groups can be compared, so it can be determined if the treatments have an effect.
An explanatory variable (or factor) in an experiment is a variable whose levels are manipulated intentionally. A response variable in an experiment is an outcome from the experimental units that is measured after the treatments have been administered.	 (1) convenience sampling and (2) voluntary response sampling These non-random sampling methods introduce potential for bias because they do not use chance to select the individuals.
Types of BiasNonresponse - selected people do not respondUndercoverage - systematically excluding peoplefrom being able to be selectedResponse bias - providing inaccurate responses(on purpose or by accident)Wording Issues - confusing wording or question isslanted towards a particular response	When an experiment is performed on animals or objects, we call those animals or objects experimental units . When an experiment is performed on humans, we call them subjects .
NO! NO! NO! A flawed sampling design can never be improved by increasing the sample sizeyou'll just get a BIGGER flawed sample. Note: A larger sample size does reduce variability when the sampling design is NOT flawed. ©	Bias is the systematic tendency to overestimate or underestimate the true population parameter.
Did the researchers impose a treatment? If NO → observational study If YES → experiment	The results of a survey or experiment can only be generalized to the population from which the sample/subjects were randomly selected . If the sample/subjects were not randomly selected then the results can only be generalized to "people like the ones in the study."

Sampling/Experiments! When can we make conclusions about cause and effect?	Sampling/Experiments! How to carry out a random assignment by selecting from a hat
Sampling/Experiments! Simple Random Sample (SRS)	Sampling/Experiments! Stratified random sample
Sampling/Experiments! Confounding Variable	Sampling/Experiments! Systematic random sample
Sampling/Experiments! What should a well- designed experiment include?	Sampling/Experiments! Completely Randomized Design
Sampling/Experiments! What is a randomized block design and what is the	Sampling/Experiments! Matched Pairs Design

 Write each subject's name on equal sized slips of paper. Put all the slips of paper in a hat. Mix well. Select as many names as needed for each treatment group, without replacement. 	 Did the researchers randomly assign the subjects to treatment groups? If YES → YAY! You can make conclusions about cause and effect. If NO → You CANNOT say that the explanatory variable CAUSED the change in the response variable.
A stratified random sample involves the division of a population into separate groups, called strata, based on shared attributes or characteristics (homogeneous grouping). Within each stratum a simple random sample is selected, and the selected units are combined to form the sample. Ex: Randomly select 25 seniors and 25 juniors.	A simple random sample (SRS) is a sample in which <u>every group of a given size</u> has an equal chance of being chosen. To obtain an SRSs (1) number individuals and use a random number generator to select which ones to include in the sample, ignoring repeats, (2) use a table of random numbers, ignoring repeats, or (3) draw names from a hat, without replacement.
A systematic random sample is a method in which sample members from a population are selected according to a random starting point and a fixed, periodic interval. Ex: Select a random person between 1 and 5 to start the process. Survey every 5 th person to enter a building thereafter.	A confounding variable is a variable that is related to the explanatory variable and influences the response variable and makes it challenging to determine cause and effect.
In a completely randomized design , treatments are assigned to experimental units completely at random. Random assignment tends to create roughly equivalent groups, so that differences in responses can be attributed to the treatments. $14 \text{ males} \rightarrow \text{Random}_{\text{Assignment}} \xrightarrow[7 \text{ men}]{}^{\text{Group 1}} \xrightarrow[7 \text{ men}]{}^{\text{Treatment 1}} \xrightarrow[\text{Rate}]{}^{\text{Compare Heart}} \stackrel{\text{Rate}}{}^{\text{Compare Heart}}$	 a. Comparisons of at least two treatment groups, one of which could be a control group. b. Random assignment of treatments to experimental units. c. Replication enough experimental units in each treatment group to be able to detect a difference. d. Control of potential confounding variables, where appropriate.
A matched pairs design is a special case of a randomized block design. Using a blocking variable, subjects are arranged in pairs matched on one or more relevant factors. Every pair receives both treatments by randomly assigning one treatment to one member of the pair and subsequently assigning the remaining treatment to the second member of the pair. Alternately, each subject may get both treatments.	 For a randomized block design, treatments are assigned completely at random within each block. For each block, individuals are similar to each other with respect to at least one blocking variable. The purpose of blocking is: to reduce the variability of results within each treatment group to eliminate the possibility of the blocking variable as a confounding variable.

$\mu_{X} = \frac{1}{p} \frac{\prod_{\substack{is \ the \ probability \\ of \ success!}}}{\prod_{x} \frac{1}{p}} \sigma_{X} = \frac{\sqrt{1-p}}{p}$	$\mu_X = np$ $\sigma_X = \sqrt{np(1-p)}$ Remember that <i>n</i> is the number of trials and <i>p</i> is the probability of success!
$P(X = x) = (1 - p)^{x - 1} p$ <i>p</i> is the probability of success <i>x</i> is the number of successes	$P(X = x) = \binom{n}{x} p^{x} (1-p)^{n-x}$ This is ${}_{n}C_{x}$ on the calculator! n is the number of trials p is the probability of success x is the number of successes
 GEOMETRIC RANDOM VARIABLE 1. Binary: two outcomes for each trial (success or failure) 2. Independent: Each trial is independent of the next 3. Trials UNTIL a success (not fixed number) 4. Same probability of success for each trial (p) Remember: Keep going until a success. 	 BINOMIAL RANDOM VARIABLE 1. Binary: two outcomes for each trial (success or failure) 2. Independent: Each trial is independent of the next 3. Number of trials is a fixed number (n) 4. Same probability of success for each trial (p) Remember: Fixed number of trials.
P(At least 1) = 1 - P(none)	The law of large numbers states that simulated (empirical) probabilities tend to get closer to the true probability as the number of trials increases.
Two events are independent if any of the following are true. You only need to check one of these! $P(A B) = P(A)$ $P(B A) = P(B)$ $P(A \text{ and } B) = P(A) \cdot P(B)$	$P(A B) = \frac{P(A \text{ and } B)}{P(B)}$

