

Who's Who on Halloween?

Keu

Amari, Francisca, Jamirea, Micaiah, and Senad live in the same neighborhood. On Halloween, they each go out trick-or-treating, but they each start at slightly different times, wear a different costume, and have different favorite candies they like to collect. For each derivative problem you solve, you'll receive a clue from one of the neighbors about what they saw that night. Can you figure out who's who on Halloween, including what time each person started trick-or-treating, what their favorite candy is, and what costume they were in?

- CALC MEDIC

- 1. The person whose favorite candy is Air Heads started trick-or-treating before Senad.
- 2. The 5 people are the person whose favorite candy is Air Heads, the pirate, Micaiah, the person who started trick-or-treating at 7 PM and the person whose favorite candy is Twix.
- 3. Of the chef and Senad, one started trick-or-treating at 5:45 PM and the other has Twix as their favorite candy.
- 4. Francisca started trick-or-treating at 5:45 PM.
- 5. Jamirea is either the ghost or the lumberjack.
- 6. The ghost started trick-or-treating after the banana.
- 7. The person whose favorite candy is M&Ms is neither the ghost nor the banana.
- 8. The person who started trick-or-treating at 6:30 has Starbursts as their favorite candy.
- 9. The person who started trick-or-treating at 6:45 was not the banana.
- 10. The banana started trick-or-treating after Senad.

1. The graph of y = f(x) is shown.

2. Find the derivative of each function.

- $f(x) = \ln(4x) \qquad f'(x) = \frac{4}{4x} = \frac{1}{x}$ $g(x) = (3x-5)^2 \qquad g'(x) = 3 \cdot 2 \quad (3x-5) = 6(3x-5) = 18x-30$ $h(x) = \sec x \qquad h'(x) = \sec x \quad h(x) = \sec x \quad h(x) = \sec x \quad h(x) = \sec x$
- 3. The graph of y = f(x) is shown below for $-4 \le x \le 9$. For which value(s) of x is f continuous but not differentiable?

x=2 and x=7

CALC MEDIC

4. Selected values of f, g, and their derivatives are given in the table.

x	f(x)	g(x)	f'(x)	g'(x)
-3	10	1	-1	3
-1	4	-2	-3	0
2	1	-5	0	-2
5	-2	-3	2	8
8	-5	11	7	-3.5
11	5	8	13	1

Let
$$h(x) = f(x) \cdot g(x)$$
. Find $h'(8)$.
 $h'(8) = F(8) \cdot g'(8) + g(8) \cdot F'(x)$
 $= -5 \cdot (-3 \cdot 5) + 11(7)$
 $= 94.5$

5. Let $j(x) = 5x^3 - kx^2 + 10x + m$ for some constants k and m. If j(2) = -10 and j'(2) = 6, find the values of k and m.

$$j'(x) = 15x^{2} - 2kx + 10$$

$$j'(z) = 15(z)^{2} - 2k(z) + 10 = 70 - 4k = 6 \Rightarrow k = 16$$

$$j(z) = 5(z)^{3} - 16(z)^{2} + 10(z) + m = -10$$

$$= 40 - 64 + 20 + m = -10$$

$$m = -6$$

6. The graph of y = f(x) is shown below. Order the following from least=1 to greatest=4.

7. Selected values of f, g, and their derivatives are given in the table.

x	f(x)	$\boldsymbol{g}(\boldsymbol{x})$	f'(x)	g'(x)
-3	10	1	-1	3
-1	4	-2	-3	0
2	1	-5	0	-2
5	-2	-3	2	8
8	-5	11	7	-3.5
11	5	8	13	1

Let
$$k(x) = \frac{g(x)}{f(x)}$$
. Find $k'(-1)$.
 $k'(-1) = \frac{F(-1) \cdot g'(-1) - F'(-1) \cdot g(-1)}{(F(-1))^2} = \frac{4(0) - (-3)(-2)}{4^2} = \frac{-6}{16} = \frac{-3}{8}$

8. If
$$f(x) = \frac{\cos^2 x}{\sin x}$$
, find $f'(x)$.

$$F(x) = \frac{1 - \sin^2 x}{\sin x} = \csc x - \sin x$$

$$f'(x) = -\csc x \cot x - \cos x$$

9. Selected values of f, g, and their derivatives are given in the table.

x	f(x)	$\boldsymbol{g}(\boldsymbol{x})$	f'(x)	g'(x)
-3	10	1	-1	3
-1	4	-2	-3	0
2	1	-5	0	-2
5	-2	-3	2	8
8	-5	11	7	-3.5
11	5	8	13	1

Let j(x) = f(g(x)). Find j'(5).

$j'(s) = g'(s) \cdot f'(g(s)) = g \cdot f'(-3) = g \cdot (-1) = -g$

10. Let $f(x) = x^2 + 5x$ and let g be a function so that g'(x) = 3 for all x. If h(x) = f(g(x)) and h'(x) = 18x + 57, write an equation for g(x).

$$g(x) \text{ is linear with a slope of 3.} \quad g(x) = 3x + b \\ f'(x) = 2x + 5 \\ h'(x) = g'(x) \cdot f'(g(x)) = 3 \cdot [2(3x+b)+5] = 18x + 57 \\ = 18x + bb + 15 = 18x + 57 \\ bb = 42 \\ b = 7 \end{cases}$$