AP Statistics CED 6.1 Daily Video (Skill 1.A)

Name: Introducing Statistics – Why Be Normal? What Will We Learn? How do we identify evidence for a claim? How do we determine if the evidence for a claim is convincing? Does Green = More Natural? Many companies use the color green in the packaging of a product to suggest that it is healthier and more natural than other similar products. To investigate if high school students associate the color green with being more natural, two student researchers randomly selected 30 students from their school. Each subject was asked to taste two cups of lemonade in random order and state which one tasted more natural. One of the cups was green and the other cup was white. Unknown to the taste testers was the fact that both cups contained the same brand of lemonade. Of the 30 students, _____ stated that the lemonade in the green cup tasted more natural. Does Green = More Natural? Do the data provide _______that students associate the color green with being more natural? What is the ______that students associate the color green with being more natural? If the color of the cup had no effect on the subject's choice, ______ of the students should have picked the green cup. However, in the study, _____ Does Green = More Natural? What are the two explanations for the evidence that the student researchers found? 1. The color of the cups had ______ effect on the subject's choice and the researchers got a value of ______ alone. 2. Students ______ the color green with being more natural. To be convinced that Explanation #2 is correct, we need to know ______ it would be to get a sample proportion of _____ by chance alone. If it is unlikely to get _____ by chance alone, we can rule out Explanation #1 and conclude that Explanation #2 is correct. Does Green = More Natural?

How likely is it to get a sample proportion: $P(\hat{p} \ge 0.60)$ when p = 0.50 and n = 30? To answer this question, we can perform a ______.

Because we are assuming that true proportion of people who would choose the green cups 50/50 or _____, we can flip a coin _____ to represent students choosing a cup at random

AP Statistics CED 6.2 Daily Video 1 (Skill 4.C)

Constructing a Confidence Interval for a Population Proportion

What Will We Learn?			
How do we identify an appropriate confidence interval procedure for a population proportion?			
How do we verify the conditions for calculating a confidence interval for a population proportion?			
Some Preliminary Information			
There are two major types of inference that you will learn about in Units 6 – 9:			
Confidence Intervals			
- These are used to the value of a population, such as a			
population, mean or slope.			
- We use an of values – rather than a single value – toa			
parameter to account for sampling			
Significance Tests			
 These are used to about the value of a population parameter, 			
such as population proportion, or slope.			
- We use to decide whether the evidence supporting a claim			
is likely or unlikely to happen by			
In Unit 6, we will focus on data that can be summarized by calculating the			
proportion of in a sample or treatment group.			
Topics 6.2 – 6.3 focus on for a population proportion.			
Topics 6.4 – 6.7 focus on for a population proportion.			
Topics 6.8 – 6.11 focus on confidence intervals and significance tests for a in			
population proportions.			
population proportions. Example: Verifying Signatures			
population proportions. Example: Verifying Signatures In some cities and states, citizens can process new laws to be voted on in an election. To get a			
population proportions. Example: Verifying Signatures In some cities and states, citizens can process new laws to be voted on in an election. To get a proposition on the ballot, backers of the proposition must gather a specified number of signatures			
population proportions. Example: Verifying Signatures In some cities and states, citizens can process new laws to be voted on in an election. To get a proposition on the ballot, backers of the proposition must gather a specified number of signatures from registered voters in the city.			
population proportions. Example: Verifying Signatures In some cities and states, citizens can process new laws to be voted on in an election. To get a proposition on the ballot, backers of the proposition must gather a specified number of signatures from registered voters in the city.			
population proportions. Example: Verifying Signatures In some cities and states, citizens can process new laws to be voted on in an election. To get a proposition on the ballot, backers of the proposition must gather a specified number of signatures from registered voters in the city. Supporters of "Proposition 100" submitted 9388 signatures in support of this proposition. City			
population proportions. Example: Verifying Signatures In some cities and states, citizens can process new laws to be voted on in an election. To get a proposition on the ballot, backers of the proposition must gather a specified number of signatures from registered voters in the city. Supporters of "Proposition 100" submitted 9388 signatures in support of this proposition. City administrators randomly selected 500 of these signatures to verify they came from registered voters in			
population proportions. Example: Verifying Signatures In some cities and states, citizens can process new laws to be voted on in an election. To get a proposition on the ballot, backers of the proposition must gather a specified number of signatures from registered voters in the city. Supporters of "Proposition 100" submitted 9388 signatures in support of this proposition. City administrators randomly selected 500 of these signatures to verify they came from registered voters in the city. Of the 500 signatures administrators were able to verify that 364 of the signatures were from			
population proportions. Example: Verifying Signatures In some cities and states, citizens can process new laws to be voted on in an election. To get a proposition on the ballot, backers of the proposition must gather a specified number of signatures from registered voters in the city. Supporters of "Proposition 100" submitted 9388 signatures in support of this proposition. City administrators randomly selected 500 of these signatures to verify they came from registered voters in the city. Of the 500 signatures administrators were able to verify that 364 of the signatures were from registered voters in the city. Calculate and interpret a 95% confidence interval for the proportion of all			
population proportions. Example: Verifying Signatures In some cities and states, citizens can process new laws to be voted on in an election. To get a proposition on the ballot, backers of the proposition must gather a specified number of signatures from registered voters in the city. Supporters of "Proposition 100" submitted 9388 signatures in support of this proposition. City administrators randomly selected 500 of these signatures to verify they came from registered voters in the city. Of the 500 signatures administrators were able to verify that 364 of the signatures were from registered voters in the city. Calculate and interpret a 95% confidence interval for the proportion of all submitted signatures that are from registered voters in the city.			
population proportions. Example: Verifying Signatures In some cities and states, citizens can process new laws to be voted on in an election. To get a proposition on the ballot, backers of the proposition must gather a specified number of signatures from registered voters in the city. Supporters of "Proposition 100" submitted 9388 signatures in support of this proposition. City administrators randomly selected 500 of these signatures to verify they came from registered voters in the city. Of the 500 signatures administrators were able to verify that 364 of the signatures were from registered voters in the city. Calculate and interpret a 95% confidence interval for the proportion of all submitted signatures that are from registered voters in the city. Identifying the Procedure			
population proportions. Example: Verifying Signatures In some cities and states, citizens can process new laws to be voted on in an election. To get a proposition on the ballot, backers of the proposition must gather a specified number of signatures from registered voters in the city. Supporters of "Proposition 100" submitted 9388 signatures in support of this proposition. City administrators randomly selected 500 of these signatures to verify they came from registered voters in the city. Of the 500 signatures administrators were able to verify that 364 of the signatures were from registered voters in the city. Calculate and interpret a 95% confidence interval for the proportion of all submitted signatures that are from registered voters in the city. Identifying the Procedure			
population proportions. Example: Verifying Signatures In some cities and states, citizens can process new laws to be voted on in an election. To get a proposition on the ballot, backers of the proposition must gather a specified number of signatures from registered voters in the city. Supporters of "Proposition 100" submitted 9388 signatures in support of this proposition. City administrators randomly selected 500 of these signatures to verify they came from registered voters in the city. Of the 500 signatures administrators were able to verify that 364 of the signatures were from registered voters in the city. Calculate and interpret a 95% confidence interval for the proportion of all submitted signatures that are from registered voters in the city. Identifying the Procedure There are many difference confidence interval procedures that you will learn this year. Some involve			
population proportions. Example: Verifying Signatures In some cities and states, citizens can process new laws to be voted on in an election. To get a proposition on the ballot, backers of the proposition must gather a specified number of signatures from registered voters in the city. Supporters of "Proposition 100" submitted 9388 signatures in support of this proposition. City administrators randomly selected 500 of these signatures to verify they came from registered voters in the city. Of the 500 signatures administrators were able to verify that 364 of the signatures were from registered voters in the city. Identifying the Procedure There are many difference confidence interval procedures that you will learn this year. Some involve one sample and others involve two samples. Some involve estimating proportions, some involve			
population proportions. Example: Verifying Signatures In some cities and states, citizens can process new laws to be voted on in an election. To get a proposition on the ballot, backers of the proposition must gather a specified number of signatures from registered voters in the city. Supporters of "Proposition 100" submitted 9388 signatures in support of this proposition. City administrators randomly selected 500 of these signatures to verify they came from registered voters in the city. Of the 500 signatures administrators were able to verify that 364 of the signatures were from registered voters in the city. Calculate and interpret a 95% confidence interval for the proportion of all submitted signatures that are from registered voters in the city. Identifying the Procedure There are many difference confidence interval procedures that you will learn this year. Some involve one sample and others involve two samples. Some involve estimating proportions, some involve estimating			
population proportions. Example: Verifying Signatures In some cities and states, citizens can process new laws to be voted on in an election. To get a proposition on the ballot, backers of the proposition must gather a specified number of signatures from registered voters in the city. Supporters of "Proposition 100" submitted 9388 signatures in support of this proposition. City administrators randomly selected 500 of these signatures to verify they came from registered voters in the city. Of the 500 signatures administrators were able to verify that 364 of the signatures were from registered voters in the city. Calculate and interpret a 95% confidence interval for the proportion of all submitted signatures that are from registered voters in the city. Identifying the Procedure There are many difference confidence interval procedures that you will learn this year. Some involve one sample and others involve two samples. Some involve estimating proportions, some involve estimating			
population proportions. Example: Verifying Signatures In some cities and states, citizens can process new laws to be voted on in an election. To get a proposition on the ballot, backers of the proposition must gather a specified number of signatures from registered voters in the city. Supporters of "Proposition 100" submitted 9388 signatures in support of this proposition. City administrators randomly selected 500 of these signatures to verify they came from registered voters in the city. Of the 500 signatures administrators were able to verify that 364 of the signatures were from registered voters in the city. Calculate and interpret a 95% confidence interval for the proportion of all submitted signatures that are from registered voters in the city. Identifying the Procedure There are many difference confidence interval procedures that you will learn this year. Some involve one sample and others involve two samples. Some involve estimating proportions, some involve estimating When the goal is to estimate the of			
population proportions. Example: Verifying Signatures In some cities and states, citizens can process new laws to be voted on in an election. To get a proposition on the ballot, backers of the proposition must gather a specified number of signatures from registered voters in the city. Supporters of "Proposition 100" submitted 9388 signatures in support of this proposition. City administrators randomly selected 500 of these signatures to verify they came from registered voters in the city. Of the 500 signatures administrators were able to verify that 364 of the signatures were from registered voters in the city. Calculate and interpret a 95% confidence interval for the proportion of all submitted signatures that are from registered voters in the city. Identifying the Procedure There are many difference confidence interval procedures that you will learn this year. Some involve one sample and others involve two samples. Some involve estimating proportions, some involve estimating			
population proportions. Example: Verifying Signatures In some cities and states, citizens can process new laws to be voted on in an election. To get a proposition on the ballot, backers of the proposition must gather a specified number of signatures from registered voters in the city. Supporters of "Proposition 100" submitted 9388 signatures in support of this proposition. City administrators randomly selected 500 of these signatures to verify they came from registered voters in the city. Of the 500 signatures administrators were able to verify that 364 of the signatures were from registered voters in the city. Calculate and interpret a 95% confidence interval for the proportion of all submitted signatures that are from registered voters in the city. Identifying the Procedure There are many difference confidence interval procedures that you will learn this year. Some involve one sample and others involve two samples. Some involve estimating proportions, some involve estimating			

After identifying the correct procedure, you must verify that the for using that procedure are met. In general, you should always be checking for: •	Checking the Conditions			
procedure are met: In general, you should always be checking for: •in the methods used to collect the data, and • that the appropriatein the methods used to collect the data, and • that the appropriatein the methods used to collect the data, and • that the appropriatein the methods used to collect the data, and • that the appropriatein the methods used to collect the data, and • that the appropriateis distribution has the correct shape. Checking the Conditions for a one-sample z interval for a sample from the population. 2. When sampling of the population size. To check that the shape of theis distribution is approximately normal: 3. Both and That is, the number of in the sample and the number of in the sample are both at least 10. *Note that whave a there instead of ρ , that is because in thewe do not know the truth about the population, that is what we are trying to figure out, so we use β . Checking the Conditions Supporters of "Proposition 100" submitted 9388 signatures (that's our size) in support of this proposition. City administrators randomly selected 500 of these signatures (that's our size) to verify that 364 of the signatures were from registered voters in the city (so our value of β is Check if the conditions for calculating a confidence interval are met. 1. The signatures were selected. \Box 2. The conditions have been The conditions have been Check the Conditions, Part 2 Suppose the city administrators were in a hurry and only verified the first 40 signatures submitted. Of these 40, 38 were from registered voters in the city. Using these data, would it be appropriate to calculate a confidence interval for the proportion of all submitted signatures that are from registered voters in the city. Using these data, would it be appropriate to calculate a confidence interval for the population propor	After identifying the correct procedure, you must verify that the for using that			
In general, you should always be checking for: •	procedure are met.			
•in the methods used to collect the data, and • that the appropriate	In general, you should always be checking for:			
 that the appropriate	• in the methods used to collect the data, and			
Checking the Conditions for a one-sample z interval for a	 that the appropriate distribution has the correct shape. 			
To check for	Checking the Conditions for a one-sample <i>z</i> interval for a proportion.			
1. The data are collected using a replacement, the is less than or equal to of the population size. To check that the shape of the is less than is less than	To check for:			
2. When sampling	1. The data are collected using a sample from the population.			
or equal to of the population size. To check that the shape of the distribution is approximately normal: 3. Both and That is, the number of in the sample are both at least 10. *Note that we have $\hat{\rho}$ there instead of ρ , that is because in the we do not know the truth about the population, that is what we are trying to figure out, so we use $\hat{\rho}$. Checking the Conditions Supporters of "Proposition 100" submitted 9388 signatures (that's our size) in support of this proposition. City administrators randomly selected 500 of these signatures (that's our size) to verify they came from registered voters in the city. Of the 500 signatures administrators were able to verify that 364 of the signatures were from registered voters in the city (so our value of $\hat{\rho}$ is). Check if the conditions for calculating a confidence interval are met. 1. The signatures were selected	2. When sampling replacement, the is less than			
To check that the shape of the distribution is approximately normal: 3. Both and That is, the number of in the sample are both at least 10. *Note that we have $\hat{\rho}$ there instead of ρ , that is because in the we do not know the truth about the population, that is what we are trying to figure out, so we use $\hat{\rho}$. Checking the Conditions Supporters of "Proposition 100" submitted 9388 signatures (that's our size) in support of this proposition. City administrators randomly selected 500 of these signatures (that's our size) to verify they came from registered voters in the city. Of the 500 signatures administrators were able to verify that 364 of the signatures were from registered voters in the city (so our value of $\hat{\rho}$ is). Check if the conditions for calculating a confidence interval are met. 1. The signatures were selected. \Box 2. The sample size () is less than of the size (9388). \Box 3. $n\hat{\rho} = \ and n(1 - \hat{\rho}) = \ created = 1$ 2. The conditions have been *Note: 364 is the number of size (9388). \Box 3. $n\hat{\rho} = \ and n(1 - \hat{\rho}) = \ created = 1$ 3. $n\hat{\rho} = \ and n(1 - \hat{\rho}) = \ created = 1$ 3. $n\hat{\rho} = \ and n(1 - \hat{\rho}) = \ created = 1$ 3. $n\hat{\rho} = \ and n(1 - \hat{\rho}) = \ created = 1$ 3. $n\hat{\rho} = \ but n(1 - \hat{\rho}) = \ created = 1$ 3. $n\hat{\rho} = \ but n(1 - \hat{\rho}) = \ created = 1$ 3. $n\hat{\rho} = \ but n(1 - \hat{\rho}) = \ created = 1$ 3. $n\hat{\rho} = \ but n(1 - \hat{\rho}) = \ created = 1$ 3. $n\hat{\rho} = \ but n(1 - \hat{\rho}) = \ created = 1$ 3. $n\hat{\rho} = \ but n(1 - \hat{\rho}) = \ created = 1$ 4. The signatures were been met, so it is appropriate to proceed. What Should We Take Away? How do we identify an appropriate confidence interval procedure for a population proportion?	or equal to of the population size.			
3. Both and That is, the number of in the sample and the number of in the sample are both at least 10. *Note that we have $\hat{\rho}$ there instead of ρ , that is because in the we do not know the truth about the population, that is what we are trying to figure out, so we use $\hat{\rho}$. Checking the Conditions Supporters of "Proposition 100" submitted 9388 signatures (that's our	To check that the shape of the distribution is approximately normal:			
the sample and the number of in the sample are both at least 10. *Note that we have β there instead of p , that is because in the we do not know the truth about the population, that is what we are trying to figure out, so we use β . Checking the Conditions Supporters of "Proposition 100" submitted 9388 signatures (that's our	3. Both and That is, the number of in			
*Note that we have β there instead of ρ , that is because in the	the sample and the number of in the sample are both at least 10.			
population, that is what we are trying to figure out, so we use β. Checking the Conditions Supporters of "Proposition 100" submitted 9388 signatures (that's our	*Note that we have \hat{p} there instead of p , that is because in the we do not know the truth about the			
Checking the Conditions Supporters of "Proposition 100" submitted 9388 signatures (that's our	population, that is what we are trying to figure out, so we use \hat{p} .			
Supporters of "Proposition 100" submitted 9388 signatures (that's oursize) in support of this proposition. City administrators randomly selected 500 of these signatures (that's oursize) to verify they came from registered voters in the city. Of the 500 signatures administrators were able to verify that 364 of the signatures were from registered voters in the city (so our value of $\hat{\rho}$ is). Check if the conditions for calculating a confidence interval are met. 1. The signatures wereselected. \Box 2. The sample size () is less thanof thesize (9388). \Box 3. $n\hat{\rho} =and n(1 - \hat{\rho}) = \Box$ The conditions have been *Note: 364 is the number of \Box The conditions, Part 2 Suppose the city administrators were in a hurry and only verified the first 40 signatures submitted. Of these 40, 38 were from registered voters in the city. Using these data, would it be appropriate to calculate a confidence interval for the proportion of all submitted signatures that are from registered voters in the city? 1. The signatures were selected. \Box 2. The sample size of is less than of the population size. \Box 3. $n\hat{\rho} = but n(1 - \hat{\rho}) = for the population size. \Box3. n\hat{\rho} = but n(1 - \hat{\rho}) = of the population proportion? When estimating the of successes in a population, use a there exercise a solution proportion?$	Checking the Conditions			
support of this proposition. City administrators randomly selected 500 of these signatures (that's our	Supporters of "Proposition 100" submitted 9388 signatures (that's our size) in			
administrators were able to verify they came from registered voters in the city. Of the 500 signatures administrators were able to verify that 364 of the signatures were from registered voters in the city (so our value of β is). Check if the conditions for calculating a confidence interval are met. 1. The signatures were selected. □ 2. The sample size () is less than of the size (9388). □ 3. $n\beta$ = and $n(1 - \beta)$ = *Note: 364 is the number of *Note: 364 is the number of *Note: 364 is the number of and 136 is the number of *Note: 364 is the number of	support of this proposition. City administrators randomly selected 500 of these signatures (that's our			
administrators were able to verify that 364 of the signatures were from registered voters in the city (so our value of $\hat{\rho}$ is				
our value of $\hat{\rho}$ is	administrators were able to verify that 364 of the signatures were from registered voters in the city (so			
are met. 1. The signatures were selected. \Box 2. The sample size () is less than of the size (9388). \Box 3. $n\hat{\rho} = \ and n(1 - \hat{\rho}) = \ \Box$ The conditions have been *Note: 364 is the number of and 136 is the number of Check the Conditions, Part 2 Suppose the city administrators were in a hurry and only verified the first 40 signatures submitted. Of these 40, 38 were from registered voters in the city. Using these data, would it be appropriate to calculate a confidence interval for the proportion of all submitted signatures that are from registered voters in the city? 1. The signatures were selected. \Box 2. The sample size of is less than of the population size. \Box 3. $n\hat{\rho} = \ but n(1 - \hat{\rho}) = \ \Box$ The conditions have been met, so it is appropriate to proceed. What Should We Take Away? How do we identify an appropriate confidence interval procedure for a population proportion? When estimating the of successes in a population, use a How do we verify the conditions for calculating a confidence interval for a population proportion? When estimating the sample from the population.	our value of $\hat{\rho}$ is/). Check if the conditions for calculating a confidence interval			
1. The signatures were	are met.			
2. The sample size () is less than of the size (9388). 3. $n\hat{p} =$ and $n(1 - \hat{p}) =$ The conditions have been *Note: 364 is the number of and 136 is the number of Check the Conditions, Part 2 Suppose the city administrators were in a hurry and only verified the first 40 signatures submitted. Of these 40, 38 were from registered voters in the city. Using these data, would it be appropriate to calculate a confidence interval for the proportion of all submitted signatures that are from registered voters in the city? 1. The signatures were selected. 2. The sample size of is less than of the population size. 3. $n\hat{p} =$ but $n(1 - \hat{p}) =$ The conditions have been met, so it is appropriate to proceed. What Should We Take Away? How do we identify an appropriate confidence interval procedure for a population proportion? When estimating the of successes in a population, use a How do we verify the conditions for calculating a confidence interval for a population proportion?	1. The signatures were selected. \Box			
3. $n\hat{p} = $ and $n(1 - \hat{p}) = $ The conditions have been *Note: 364 is the number of and 136 is the number of Check the Conditions, Part 2 Suppose the city administrators were in a hurry and only verified the first 40 signatures submitted. Of these 40, 38 were from registered voters in the city. Using these data, would it be appropriate to calculate a confidence interval for the proportion of all submitted signatures that are from registered voters in the city? 1. The signatures were selected. 2. The sample size of is less than of the population size. 3. $n\hat{p} = $ but $n(1 - \hat{p}) = $ The conditions have been met, so it is appropriate to proceed. What Should We Take Away? How do we identify an appropriate confidence interval procedure for a population proportion? When estimating the of successes in a population, use a How do we verify the conditions for calculating a confidence interval for a population proportion?	2. The sample size () is less than of the size (9388). \Box			
The conditions have been *Note: 364 is the number of and 136 is the number of Check the Conditions, Part 2 Suppose the city administrators were in a hurry and only verified the first 40 signatures submitted. Of these 40, 38 were from registered voters in the city. Using these data, would it be appropriate to calculate a confidence interval for the proportion of all submitted signatures that are from registered voters in the city? 1. The signatures were selected. \Box 2. The sample size of is less than of the population size. \Box 3. $n\hat{\rho} = _$ but $n(1 - \hat{\rho}) = _$ \Box The conditions have been met, so it is appropriate to proceed. What Should We Take Away? How do we identify an appropriate confidence interval procedure for a population proportion? When estimating the of successes in a population, use a How do we verify the conditions for calculating a confidence interval for a population proportion? • The data is collected using a sample from the population.	3. $n\hat{p} = $ and $n(1 - \hat{p}) = $ \Box			
*Note: 364 is the number of and 136 is the number of Check the Conditions, Part 2 Suppose the city administrators were in a hurry and only verified the first 40 signatures submitted. Of these 40, 38 were from registered voters in the city. Using these data, would it be appropriate to calculate a confidence interval for the proportion of all submitted signatures that are from registered voters in the city? 1. The signatures were selected. \Box 2. The sample size of is less than of the population size. \Box 3. $n\hat{p} =$ but $n(1 - \hat{p}) =$ \Box The conditions have been met, so it is appropriate to proceed. What Should We Take Away? How do we identify an appropriate confidence interval procedure for a population proportion? When estimating the of successes in a population, use a How do we verify the conditions for calculating a confidence interval for a population proportion?	The conditions have been			
Check the Conditions, Part 2 Suppose the city administrators were in a hurry and only verified the first 40 signatures submitted. Of these 40, 38 were from registered voters in the city. Using these data, would it be appropriate to calculate a confidence interval for the proportion of all submitted signatures that are from registered voters in the city? 1. The signatures were selected. \Box 2. The sample size of but $n(1 - \hat{p}) =$ \Box The conditions have been met, so it is appropriate to proceed. What Should We Take Away? How do we identify an appropriate confidence interval procedure for a population proportion? When estimating the of successes in a population, use a How do we verify the conditions for calculating a confidence interval for a population proportion? • The data is collected using a sample from the population.	*Note: 364 is the number of and 136 is the number of			
Suppose the city administrators were in a hurry and only verified the first 40 signatures submitted. Of these 40, 38 were from registered voters in the city. Using these data, would it be appropriate to calculate a confidence interval for the proportion of all submitted signatures that are from registered voters in the city? 1. The signatures were	Check the Conditions, Part 2			
these 40, 38 were from registered voters in the city. Using these data, would it be appropriate to calculate a confidence interval for the proportion of all submitted signatures that are from registered voters in the city? 1. The signatures were	Suppose the city administrators were in a hurry and only verified the first 40 signatures submitted. Of			
calculate a confidence interval for the proportion of all submitted signatures that are from registered voters in the city? 1. The signatures were	these 40, 38 were from registered voters in the city. Using these data, would it be appropriate to			
voters in the city? 1. The signatures were selected. 2. The sample size of is less than of the population size. 3. $n\hat{p} =$ but $n(1 - \hat{p}) =$ The conditions have been met, so it is appropriate to proceed. What Should We Take Away? How do we identify an appropriate confidence interval procedure for a population proportion? When estimating the of successes in a population, use a How do we verify the conditions for calculating a confidence interval for a population proportion? • The data is collected using a sample from the population.	calculate a confidence interval for the proportion of all submitted signatures that are from registered			
 The signatures were	voters in the city?			
 2. The sample size of is less than of the population size. □ 3. np̂ = but n(1 - p̂) = □ The conditions have been met, so it is appropriate to proceed. What Should We Take Away? How do we identify an appropriate confidence interval procedure for a population proportion? When estimating the of successes in a population, use a How do we verify the conditions for calculating a confidence interval for a population proportion? The data is collected using a sample from the population. 	1. The signatures were selected. \Box			
 3. np̂ =but n(1 - p̂) = □ The conditions havebeen met, so it isappropriate to proceed. What Should We Take Away? How do we identify an appropriate confidence interval procedure for a population proportion? When estimating the of successes in a population, use a How do we verify the conditions for calculating a confidence interval for a population proportion? The data is collected using a sample from the population. 	2. The sample size of is less than of the population size. \square			
The conditions have been met, so it is appropriate to proceed. What Should We Take Away? How do we identify an appropriate confidence interval procedure for a population proportion? When estimating the of successes in a population, use a How do we verify the conditions for calculating a confidence interval for a population proportion? • The data is collected using a sample from the population. • When each grade are a size is < 10% of the population.	3. $n\hat{p} = $ but $n(1 - \hat{p}) = $			
 What Should We Take Away? How do we identify an appropriate confidence interval procedure for a population proportion? When estimating the of successes in a population, use a How do we verify the conditions for calculating a confidence interval for a population proportion? The data is collected using a sample from the population. 	The conditions have been met, so it is appropriate to proceed.			
 How do we identify an appropriate confidence interval procedure for a population proportion? When estimating the of successes in a population, use a How do we verify the conditions for calculating a confidence interval for a population proportion? The data is collected using a sample from the population. 	What Should We Take Away?			
 When estimating the of successes in a population, use a How do we verify the conditions for calculating a confidence interval for a population proportion? The data is collected using a sample from the population. When sampling replacement the sample size is < 10% of the population. 	How do we identify an appropriate confidence interval procedure for a population proportion?			
 How do we verify the conditions for calculating a confidence interval for a population proportion? The data is collected using a sample from the population. 	When estimating the of successes in a population, use a			
 How do we verify the conditions for calculating a confidence interval for a population proportion? The data is collected using a sample from the population. 				
• The data is collected using a sample from the population.	How do we verify the conditions for calculating a confidence interval for a population proportion?			
. When compliant the complexity is a 100' of the new latter	The data is collected using a sample from the population.			
• when sampling replacement, the sample size is $\leq 10\%$ of the population.	• When sampling replacement, the sample size is \leq 10% of the population.			
• Both and	• Both and			

AP Statistics CED 6.2 Daily Video 2 (Skill 3.D) Constructing a Confidence Interval for a Population Proportions

What Will We Learn?
How do we determine the margin of error when estimating a population proportion?
How do we calculate a confidence interval for a population proportion?
Example: Verifying Signatures
Supporters of "Proposition 100" submitted 9388 signatures in support of this proposition. City
administrators randomly selected 500 of these signatures to verify they came from registered voters
in the city. Of the 500 signatures administrators were able to verify that 364 of the signatures were
from registered voters in the city. Calculate and interpret a 95% confidence interval for the
proportion of all submitted signatures that are from registered voters in the city.
*NOTE: In the previous video, we identified the procedure and checked the conditions.
Some Preliminary Information
Based on what we learned in Unit 5, the sample proportion is an unbiased estimator of the
population proportion However, because of sampling variability, the value of will
almost never the value of <i>p</i> . In other word, we should have confidence that the
value of correctly the population proportion. To increase our confidence
that our is correct, we use an interval of values (a)
as our estimate rather than a single value (a
Calculating a Margin of Error
In AP Statistics, confidence intervals have the form:
Cl =+
The margin of error described how much the value of a is likely to vary
from the value of the corresponding
The margin of error is determined by two factors:
 How much the typically varies from the
 How confident we want to be in our estimate
margin of error = () ()
Calculating the Margin of Error
margin of error = (critical value) ()
The standard error of a statistic is an estimate of the of the
distribution of the statistic. Typically, to find the true standard deviation,
you need to know information about the In this case, we will only know
information about the
From Topic 5.5, the standard deviation of the sampling distribution of \hat{p} is: $\sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}}$
Because we don't know the value of, we replace p with \hat{p} to get the $SE_{\hat{p}} = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$

Calculating the Margin of Error			
margin of error = ()(standard error of statistic)		
The is a multiplier that mak	kes the margin of error large enough to give a		
specific amount of that the inte	erval the value of the		
For confidence intervals for a	, the critical values		
represent the boundaries encompassing the	C% of the normal		
distribution, where C% is the	confidence level for a proportion.		
Calculating the Margin of Error	· · ·		
Margin of error - ()(standard error of statistic)		
In the verifying signature example, we are asked to co	onstruct a		
95% confidence interval. To find the va	alue z^* for $area = 0.95$		
a 95% confidence interval, find the boundaries encom	npassing		
the 95% of the norma	-3 -2 -1 0 1 2 3		
distribution.	$-z^* = -1.96$ $z^* = 1.96$		
	The critical value of z* =		
Calculating the Confidence Interval			
Cl = +	; in other words,		
CI =+ () ()		
For our example about verifying signatures, $\hat{p} = $	/=		
Therefore:			
[a(1 a)] =			
$CI = \hat{p} \pm z^* \left(\frac{p(1-p)}{p} \right)$			
<u> </u>			
=			
*NOTE: Stop and find the information you need to ca	Iculate the CI on the formula sheet!!		
Calculating the Confidence Interval			
The information you need to calculate the confidence	interval is available on the formula sheet. Stop		
find this on your formula sheet			
Calculating the Number of Valid Signatures			
We can use confidence intervals for a population proportion to estimate the			
successes in a population. Because there were 9388 signatures in the population a 95% confidence			
interval for the of valid signatures is:			
9388(0.689) to 9388(0.767) ~	to valid signatures		
What Should We Take Away?			
VVII at Should VVE Take Away: How do we determine the margin of error when estimating a perculation propertien?			
\square we determine the margin of error when estimating a population proportion?			
How do we calculate a confidence interval for a population proportion?			
now do we calculate a confidence interval for a popu			
└╷╒ <u>╷</u>	_		

AP Statistics CED 6.2 Daily Video 3 (Skill 3.D)

Construction a Confidence Interval for a Population Proportion

What Will We Learn?			
How do we determine the minimum sample size that will achieve a given margin of error?			
What Proportion of Students Bring Lunch?			
The director of food services in a large high school district wants to estimate the proportion			
of students who always bring lunch from home. What is the smallest sample size that will			
result in a margin of error of at most 0.05 with 95% confidence?			
*Note: We have NOT taken our sample yet!			
For a one-sample z interval for a population proportion: margin of error = $z^* \sqrt{\frac{p(1-p)}{n}}$			
What Proportion of Students Bring Lunch?			
We want to solve the following inequality for <i>n</i> : $Z^* \sqrt{\frac{p(1-p)}{n}} \leq 0.05$			
Because we want a 95% confidence interval, z* =			
What value do we use for \hat{p} ?			
• Use a quessed value for $\hat{\rho}$ based on a pilot study or			
• Use $\hat{p} = $ in order to find an bound for the sample size.			
What Proportion of Students Bring Lunch?			
Using $\hat{p} = 0.5$ we can now solve for <i>n</i> : $1.96\sqrt{\frac{0.5(1-0.5)}{n}} \le 0.05$ (Solve along with the video)			
*NOTE: When determining the english complexity you always yound			
What Properties Pead the Comics?			
The aditor of a newspaper wants to actimate the properties of subscribers who read			
The editor of a newspaper wants to estimate the proportion of subscribers who read			
anything from the comics section. What is the smallest sample size that result in a marge of			
error of at most 0.03 with 90% confidence? $0.5 (1 - 0.5)$			
To do this you will need: $\hat{p} = \underline{\qquad}$ and; $\underline{\qquad} \sqrt{\underline{\qquad}} n \leq \underline{\qquad}$			
z* for 90% =			
(Fill in the blanks to the right and solve)			
(Fin in the blanks to the right and solve)			
$\leq n \implies$ The editor needs to survey at least subscribers.			

What Should We Take Away?

How do we determine the minimum sample size that will achieve a given margin of error?

margin of error = _____

Use a guessed value of \hat{p} or us \hat{p} = _____ to find an upper bound for the required sample size.

*NOTE: This procedure only works when we are trying to estimate a ______

Name			
AP Statistics CED 6.3 Daily Video 1 (Skill 4.B)			
Justifying a Claim Based on a Confidence Interval for a Population Proportion			
What Will We Learn?			
How do we interpret a confidence interval for a population proportion?			
How do we justify a claim based on a confidence interval for a population proportion?			
Verifying Signatures Supporters of "Proposition 100" submitted 9388 signatures in support of this proposition. City administrators randomly selected 500 of these signatures to verify they came from registered voters in the city. Of the 500 signatures administrators were able to verify that 364 of the signatures were from registered voters in the city. Calculate and interpret a 95% confidence interval for the proportion of all submitted signatures that are from registered voters in the city.			
*Note: In previous videos we have already 1) identified the procedure, 2) checked the conditions and 3) done the calculations for this interval.			
Interpreting the Confidence Interval			
In general, here is how to interpret a confidence interval for a			
:			
"We are C% confident that the interval from to captures the [population parameter]. (*Note: We always interpret things in AP Statistics!) From Topic 6.2, Video 2, the 95% confidence interval is to			
We are confident that the interval from captures			
the proportion of			
Justitying a Claim			
According to city administrators, propositions need at least 6000 valid signatures to qualify to be on the ballot in the next election. Do the supports of Proposition 100 have enough signatures?			
Because the supporters submitted signatures, the required proportion of valid signatures is			

Name				
Because all of the values in the confidence interval (0.689 to 0.767) are greater that 0.639,				
there is that the supporters of Proposition				
100 have enough signatures.				
Will Proposition 100 Pass?				
Now that Proposition 100 is on the ballot, a local television news program wants to estimate the proportion of registered voters who plan to vote for the proposition. Based on a random sample of 500 registered voters in the city the new program reported a 95% confidence interval of 0.518 + 0.044.				
(a) Interpret the confidence interval. (Remember the sentence from abovel)				
(b) Based on the interval, is there convincing evidence that a majority of registered voters in the city plan to vote for Proposition 100?				
What Should We Take Away? How do we interpret a confidence interval for a population proportion? (copy sentence)				
 How do we justify a claim based on a confidence interval for a population proportion? If the values of the confidence interval are consistent with the claim, there is for the claim. If of the values in the confidence interval are inconsistent with 				
the claim, there is convincing evidence for the claim.				

AP Statistics CED 6.3 Daily Video 2 (Skill 4.B)

Justifying a Claim Based on a Confidence Interval for a Population Proportion

What Will We Learn?

How do we interpret the confidence level of a confidence interval for a population proportion?

How do the sample size and confidence level affect the margin of error for a confidence interval for population proportion?

Sampling From a High School	(Many Samples)		
In a high school with 2000 student, 30% of the students			
have a driver's license. Suppose we select a random	ŷ		
sample $n = 50$ students from the high school, as each	\hat{p}		
student in the sample if he or she has a driver's license,	\hat{p}		
and calculate a 95% confidence interval for the	\hat{p}		
proportion of all student with a driver's license.	p		
	\hat{p}		
So far, = of the intervals have	p		
captured $p = 0.30$, the proportion of all students with a	<i>p p p p p p p p p p</i>		
driver's license. If we continued this process, about 95%	0.20 0.30 0.40		
of the "95% would			
capture $p = $. So if the confidence level is	, you know that if you took lots		
of samples and used those samples to make lots if interval	that about of those		
intervals would end up capturing the			
Interpreting Confidence Level			
In repeated random sampling with the	, approximately		
C% of "C%" confidence intervals will the population proportion.			
"If we take random samples of from	n the population of students at		
high school and use each sample to construction	on a 95% confidence interval for		
the of all students with a driver's lice	cense, about of those		
intervals would the population proportion.	"		
Interpreting Confidence Level			
The confidence level describes what happens in	It does		
give the probability that a interval captures the population			
proportion. (You will see this on the AP exam as a multiple-	choice question!!)		
Factors That Affect the Margin of Error			
Recall that confidence intervals in AP Statistics have the fol	lowing structure:		
CI =+			
The width of a confidence interval is the	e margin of error.		
We generally prefer narrow confidence intervals (more pred	cision), so we want the		
to be small.			

Name			
Factors That Affect the Margin of Error			
There are two common ways to decrease the margin of error. Assuming everything else			
remains the same, the margin of error will be when			
1. The sample size is, because in the formula:			
margin of error = $z^* \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$			
For a, the width of the interval is proportional to $\frac{1}{\sqrt{n}}$.			
This means that the sample size will cut the margin of error in			
2. The confidence level is smaller, because in the formula:			
margin of error = $z^* \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$			
The critical value for a 90% confidence ($z^* = $) is smaller than the critical value			
for 95% confidence ($z^* = $), making the 90% CI narrower than the 95% CI.			
What Should We Take Away?			
How do we interpret the confidence level of a confidence interval for a population			
proportion?			
In repeated random sampling with the,			
approximately C% of C% confidence intervals will the			
proportion.			
How do the sample size and confidence level affect the margin of error for a confidence interval for population proportion? Assuming everything stays the same:			
the sample size will the margin of error.			
the confidence level will the margin of			
error.			

AP Statistics CED 6.3 Daily Video 3 (Skill 4.D)

Justifying a Claim Based on a Confidence Interval for a Population Proportion

What Will We Learn?

How do we construct and interpret a confidence interval for a population proportion?

2010 B #4

A husband and wife, Mike and Lori, share a digital music player that has a feature that randomly selects which song to play. A total of 2,384 songs were loaded onto the player, some by Mike and the rest by Lori. Suppose that when the player was in the randomselection mode, 13 of the first 50 songs selected were songs loaded by Lori.

(a) Construct and interpret a 90 percent confidence interval for the proportion of songs on the player that were loaded by Lori.

(b) Mike and Lori are unsure about whether the player samples the songs with replacement or without replacement when the player is in random-selection mode. Explain why this distinction is not important for the construction of the interval in part (a).

2010 B #4 part (a)

(a) Construct and interpret a 90 percent confidence interval for the proportion of songs on the player that were loaded by Lori.

1.	Define the	e parameter	you are	trying t	o estimate:
----	------------	-------------	---------	----------	-------------

2. Identify the procedure that will be used to create the confidence interval:

3. Check the condition to make sure the chosen procedure is valid:

- ___
- -

_ met.

The conditions _____ 2010 B #4 part (a)

(a) Construct and interpret a 90 percent confidence interval for the proportion of songs on the player that were loaded by Lori.

4. Find $\hat{p} =$ ______

5. Calculate the CI: =______+

=______<u>+</u>____ =_____to _____

|--|

I	Name			
2010 B #4 part (b)				
(b) Mike and Lori are unsure about whether the	ne player samples the songs wi	th replacement		
or without replacement when the player is in	random-selection mode. Expla	in why this		
distinction is not important for the construction	on of the interval in part (a).			
When sampling without replacement, the for	mula for the standard deviatior	n of the		
sampling distribution of \widehat{p} will	the actual value	of the standard		
deviation, unless the size is s	mall relative to the			
size.				
(See topic 5.5) In this case, the sample size of	f is less than	of the		
population size of 2384, so we can use the fo	ormula as if we were sampling v	vith		
replacement.				
What Should We Take Away?				
How do we construct and interpret a confide	nce interval for a population pr	oportion?		
Make sure to:				
 Define the you are trying to estimate. 				
Identify the	_ you are using.			
Verify that the	for the	are met (with		
evidence!).				
Calculate the	·			
Interpret the interval	(You do not need	d to interpret the		
confidence <i>level</i> unless specifically asked.)		•		

AP Statistics CED 6.4 Daily Video 1 (Skill 1.F)

Settina	l In a	Test for	Population	Proportion
Setting	Up a	I EST IOI	i opulation	пороннон

vvnat vvill vve Learn?			
How do we state a null hypothesis in a test for a population proportion?			
How do we state an alternative hypothesis in a test for a population proportion?			
Does Green = More Natural?			
Many companies use the color green in the packaging of a product to suggest that it is			
healthier and more natural than other similar products.			
To investigate if high school students associate the color green with being more natural,			
two student researchers randomly selected 30 students from their school. Each subject was			
asked to taste two cups of lemonade in random order and state which one tasted more			
natural. One of the cups was green and the other cup was white. Unknown to the taste			
testers was the fact that both cups contained the same brand of lemonade. Of the 30			
students, 18 stated that the lemonade in the green cup tasted more natural.			
Null Hypothesis:			
In a statistical test, the hypothesis is often a claim of " difference" or "			
change."			
In the lemonade example, the null hypothesis is that there is in the			
of students who would choose the green cup and the proportion who			
would choose the white cup. In other words, of the students would choose the			
areen cup. In symbols:			
p = 0.50 where p is the proportion of students at who			
would choose the cup. Until we have evidence			
otherwise, we H_0 is			
Alternative Hypothesis			
In a statistical test, the to hypothesis is the claim that we to			
In a statistical test, the hypothesis is the claim that we to support with evidence from the collected.			
In a statistical test, the hypothesis is the claim that we to support with evidence from the collected.			
In a statistical test, the hypothesis is the claim that we to support with evidence from the collected. In the lemonade example, the researchers wanted to know if the students associated the			
In a statistical test, the hypothesis is the claim that we to support with evidence from the collected. In the lemonade example, the researchers wanted to know if the students associated the color with being more So, the alternative hypothesis is that more			
In a statistical test, the hypothesis is the claim that we to support with evidence from the collected. In the lemonade example, the researchers wanted to know if the students associated the color with being more So, the alternative hypothesis is that more than of the students would choose the cup when selecting the			
In a statistical test, the hypothesis is the claim that we to support with evidence from the collected. In the lemonade example, the researchers wanted to know if the students associated the color with being more So, the alternative hypothesis is that more than of the students would choose the cup when selecting the lemonade that tasted more In symbols:			
In a statistical test, the hypothesis is the claim that we to support with evidence from the collected. In the lemonade example, the researchers wanted to know if the students associated the color with being more So, the alternative hypothesis is that more than of the students would choose the cup when selecting the lemonade that tasted more In symbols:			
In a statistical test, the hypothesis is the claim that we to support with evidence from the collected. In the lemonade example, the researchers wanted to know if the students associated the color with being more So, the alternative hypothesis is that more than of the students would choose the cup when selecting the lemonade that tasted more In symbols: H_0:			
In a statistical test, the hypothesis is the claim that we to support with evidence from the collected. In the lemonade example, the researchers wanted to know if the students associated the color with being more So, the alternative hypothesis is that more than of the students would choose the cup when selecting the lemonade that tasted more In symbols: H_0:, where p = the of students at this school who			

	Name_	
Stating Hypotheses		
For hypotheses about a parameter:		
The always contains a stric	t reference	2.
The always contains	a strict	reference.
When the inequality is or	, the alternative	is called .
When the inequality is	, the alternative is calle	d
The choice of the	is determined by	the of
interest and should be stated	data co	llection begins.
		5
* Never include a (su	ch as \widehat{p}) in the hypothes	ses!! Hypotheses are always
about the and the	nerefore should always b	oe a
* Remember to the par	ameter in terms of the _	·
Stating Hypotheses		
A newspaper reports that 40% of the a	adults in the U.S. would	say football is their favorite
sport. The mayor of a town wonders if	the proportions of adul	It in the town who would say
football is their favorite sport differs fro	om the national proport	tion. To Investigate, the
mayor will select a random sample of [•]	100 adults in the town a	and ask each adult to name
his or her favorite sport.		M/high in a graphity sign 2
		differs:
State appropriate hypotheses for the r	mayor's study.	more:
		less:
=		
=	Verb tense MATTERS!! Present Tense refers to	
	Past Tense refers to	
Where $p =$		
What Should We Take Away?		
How do we state the null hypothesis ir	n a test for a population	proportion?
H ₀ : [hypothesized proportion]		
where <i>p</i> = defined in		
How do we state the alternative hypot	hesis in a test for a pop	ulation proportion
H _a : [hypothesized propor	rtion]	
OR	1	
H _a : [hypothesized proportion]		
OR		
H₄: [hypothesized propor	tion]	

AP Statistics CED 6.4 Daily Video 2 (Skill 4.C)

Setting up a Test for a Population Proportion

What Will We Learn?

How do we identify an appropriate significance test procedure for a population proportion? How do we verify the conditions for performing a significance test for a population proportion?

Does Green = More Natural?

Many companies use the color green in the packaging of a product to suggest that it is healthier and more natural than other similar products.

To investigate if high school students associate the color green with being more natural, two student researchers randomly selected 30 students from their school. Each subject was asked to taste two cups of lemonade in random order and state which one tasted more natural. One of the cups was green and the other cup was white. Unknown to the taste testers was the fact that both cups contained the same brand of lemonade. Of the 30 students, 18 stated that the lemonade in the green cup tasted more natural.

In the previous video, we stated the hypotheses:

 $H_0: p = 0.50$

 H_a : p > 0.05, where p = the proportion of **all students at this school** who would choose the green cup.

Identifying the Procedure

When the goal is to test claim about the ______ of successes in a _____

population, we use a _____

Checking the Conditions

After identifying the correct ______, you must verify that the _____

for using that procedure are met. In general, you should always be checking for:

- _____ in the methods used to _____ the data, and
- that the appropriate ______ distribution has the correct ______.

* NOTE: Details of conditions vary from procedure to procedure!!

Checking the Conditions

Here are the conditions for a ______ for a _____ proportion.

To check for independence:

1. The data are collected using a ______ sample from the population.

2. When sampling ______ replacement, the sample size is less than or equal to ______ of the population size.

To check that the shape of the sampling distribution is ______ normal:

3. Both $np_0 \ge 10$ and $n(1 - p_0) \ge 10$, where p_0 is the proportion specified by the _____

*Note that condition #3 differs for _____

and

Name
Checking the Conditions
In the large productively two etycles to see such any new density colority of 20 stude statistics to in
In the lemonade study, two student researchers randomly selected 30 students from their
school. Of the 30 students, 18 stated that the lemonade in the green cup tasted more
natural. Check if the conditions for performing a significance test are met.
1. The students were selected \Box
2. We assume that the size (30) is less than or equal to of the total
number of students at the school. \Box
3. $np_0 = ____ \ge ___$ and $n(1 - p_0) = ____ \ge ___ \ge ___$
*Note: We are not using the successes and failures from the sample, but we
are using the number of successes and failures if the hypothesis
were true!
The are met.
Checking Conditions:
A newspaper reports that 40% of the adults in the U.S. would say football is their favorite
sport. The mayor of a town wonders if the proportions of adult in the town who would say
football is their favorite sport differs from the national proportion. To Investigate, the mayor
will select a random sample of 100 adults in the town and ask each adult to name his or her
favorite sport. Check if the conditions for performing a significance test are met.
1 🗆
2
3
Therefore:
What Should We Take Away?
How do we identify an appropriate significance test procedure for a population proportion?
When testing a claim about the of successes in a population, use a
·································
How do we verify the conditions for performing a significance test for a population
proportion?
1. The data is collected using a trom the population.
2. When sampling, the sample size is
than or to of the population size.
3. Both and, where p_0 is the proportion specified
by the

AP Statistics CED 6.5 Daily Video 1 (Skill 3.E)

Interpreting *p*-Values

What Will We Learn?

How do we calculate an appropriate test statistic in a test for a population proportion? How do we calculate a *p*-value in a test for a population proportion?

Does Green = More Natural?

To investigate if high school students associate the color green with being more natural, two student researchers randomly selected 30 students from their school. Each subject was asked to taste two cups of lemonade in random order and state which one tasted more natural. One of the cups was green and the other cup was white. Unknown to the taste testers was the fact that both cups contained the same brand of lemonade. Of the 30 students, 18 stated that the lemonade in the green cup tasted more natural.

From previous videos:

- $H_0: p = 0.50$ vs $H_a: p > 0.05$, where p = the proportion of all students at this school who would choose the green cup.
- Conditions are met.

Calculating a Test Statistic			
In our lemonade study, $\hat{p} = \frac{18}{30} = 0.60 > 0.50$ This is evidence for H_a because			
We want to know It is to get e	evidence for H_a this or		
by chance alone H_0 is	·		
After verifying the are met, calculate the standardized test statistic = $\frac{\text{sample statistic} - \frac{1}{2}}{2}$	he test statistic.		
standard de	eviation of the statistic		
Calculating a Test Statistic			
For a	, the standardized test statistic is:		
$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$ For our data it looks like this:	$z = \frac{0.60 - 0.50}{\sqrt{\frac{0.50(1 - 0.50)}{30}}} = 1.10$		
Where p_0 is the value of p specified the null hypothesis.			
Calculating a Test Statistic	III. Sampling Distributions and Inferential Statistics		
The information that you need to calculate the	Standardized test statistic: statistic - parameter standard error of the statistic		
standardized test statistic is available on the formula	Confidence interval: statistic ± (critical value)(standard error of statistic)		
sheet. Locate that now!!	Random Variable Parameters of Sampling Distribution Standard Error* of Sample Statistic For one population: $p_{j} = p$ $\sigma_{j} = \sqrt{\frac{p(1-p)}{n}}$ $s_{j} = \sqrt{\frac{p(1-p)}{n}}$		
	📥 STATS MEDIC		

📥 STATS MEDIC

AP Statistics CED 6.5 Daily Video 2 (Skill 4.B)

Interpreting *p*-Value

What Will We Learn?

How do we interpret the *p*-value in a test for a population proportion?

Does Green = More Natural?

To investigate if high school students associate the color green with being more natural, two student researchers randomly selected 30 students from their school. Each subject was asked to taste two cups of lemonade in random order and state which one tasted more natural. One of the cups was green and the other cup was white. Unknown to the taste testers was the fact that both cups contained the same brand of lemonade. Of the 30 students, 18 stated that the lemonade in the green cup tasted more natural.

From previous videos:

- $H_0: p = 0.50 \text{ vs } H_a: p > 0.50$, where p = the proportion of all students at this school who would choose the green cup.
- Conditions are met.
- $\hat{p} = 0.60, z = 1.10, and the$ *p*-value = 0.1357

Interpreting the *p*-value

In our lemonade study, $\hat{p} = \frac{18}{30} = 0.60$. This is evidence for H_a because $\hat{p} = 0.60 > 0.50$. The ______ measures how likely it is to get evidence for ______ as _____ as or ______ than the observed ______ by chance alone when ______ is true.

So, we would say something like:

"Assuming _____ of all students ______ would choose the green cup, there is a _____ probability of getting a _____ proportion of _____ by chance alone in a ______ sample of _____ students from _____."

Favorite Sport

A newspaper reports that 40% of the adults in the U.S. would say football is their favorite sport. The mayor of a town wonders if the proportions of adult in the town who would say football is their favorite sport differs from the national proportion. To Investigate, the mayor selected a random sample of 100 adults in the town and found that 29 named football as their favorite sport. Interpret the *p*-value of 0.0244.

From previous videos:

- $H_0: p = 0.40$ vs $H_a: p \neq 0.40$, where p = the proportion of all adults in the town who would say football is their favorite sport.
- Conditions are met.
- $\hat{p} = 0.29$, z = -2.25, and the *p*-value = 0.0244.

		Name_		
"Assuming of _		would	l say	
	_, there is a p	probability of gettir	ng a	proportion
as	or	than	in	direction
by chance alone in a _	sample	e of adults _		·
What Should We Take	e Away?			
How do we interpret t	he p-value in a test fo	or a nonulation pro	nortion?	
 The or <i>H</i>₀ is Make sure the 	measures how likel than the obs answer is	ly it is to get evide erved evidence by	nce for H _a as _	alone when
 The or H₀ is Make sure the Don't forget to 	measures how likel than the obs answer is reference that the	ly it is to get evide erved evidence by calcu	nce for H _a as _ /	alone when with the
 The or H₀ is Make sure the Don't forget to assumption that 	measures how likel than the obs answer is reference that the t is	y it is to get evide erved evidence by calcu	nce for H _a as _	alone when with the
 The	measures how likel than the obs answer is reference that the t is t the <i>p</i> -value	ly it is to get evide erved evidence by calcu the pro	nce for H _a as _ / llation is done	alone when with the tting a value as
 The	measures how likel than the obs answer is reference that the t is t the <i>p</i> -value or	y it is to get evide erved evidence by calcu the pro	nce for H _a as _ / / llation is done obability of ge the o	alone when with the tting a value as bserved value.

IName

AP Statistics CED 6.6 Daily Video 1

Concluding a Test for a Population Proportion			
What Will We Learn?			
How do we make a conclusion in a test for a population proportion?			
Some Preliminary Information			
Small indicate that the observed value of the test statistic would be			
if the hypothesis were, and so provide statistical			
for the hypothesis. The smaller the, the more			
the statistical evidence for the hypothesis.			
How "" does a need to be to provide statistical evidence for H_a ?			
The level \propto is a boundary value that we use to			
determine if a is or Common significance			
levels are $\propto = 0.05$; $\propto = 0.01$, and $\propto = 0.10$.			
Some Preliminary Information			
If the $\leq \propto$, we H_0 .			
In this case, there convincing statistical evidence for H_a .			
If the > \propto , we H_0 .			
In this case, there convincing statistical evidence for H_a .			
Does Green = More Natural?			
To investigate if high school students associate the color green with being more natural, two student researchers randomly selected 30 students from their school. Each subject was asked to taste two cups of lemonade in random order and state which one tasted more natural. One of the cups was green and the other cup was white. Unknown to the taste testers was the fact that both cups contained the same brand of lemonade. Of the 30 students, 18 stated that the lemonade in the green cup tasted more natural. Is there convincing statistical evidence at the $\alpha = 0.05$ significance level that more than half of all students at this school would choose the green cup?			

From previous videos:

- $H_0: p = 0.50$ vs $H_a: p > 0.50$, where p = the proportion of all students at this school who would choose the green cup.
- Conditions are met.
- $\hat{p} = 0.60, z = 1.10$, and the *p*-value = 0.1357

Here is our conclusion:

"Because the	of 0.1357	_ ∝ = 0.05, we	$_H_0$. There is not
	_statistical evidence that	half (0.50) of	students
at	would choose the gr	een cup."	

	Name
Cautions About Conclusions	
Conclusions must be justified by	comparing the to the
significance level (¤). If significance lev	el is stated in the item, you should pick a
significance level to compare to (e.g., $\propto = 0$.05).
Conclusions must be about the	hypothesis.
Conclusions must be in	
• When you fail to reject the H ₀ , don't conclude	de that the H_0 is! This is
called " the null hypothes	is." Don't do it!
• When you reject H_0 , don't say that you have	"" that H _a is true.
Favorite Sport	
A newspaper reports that 40% of the adults in the	U.S. would say football is their favorite
sport. The mayor of a town wonders if the proport	ions of adult in the town who would say
football is their favorite sport differs from the natio	nal proportion. To Investigate, the mayor
selected a random sample of 100 adults in the tow	n and found that 29 named football as
their favorite sport. Do these data provide convinc	ing statistical evidence that the proportion
of all adults in the town who would say that footba	ll is their favorite sport differs from 0.40?
Use ∝ = .10.	
Favorite Sport	
From previous videos:	
 H₀: p= 0.40 vs H_a: p ≠ 0.40, where p = the p 	proportion of all adults in the town who
would say football is their favorite sport.	
Conditions are met.	
• $\hat{p} = 0.29, z = -2.25$, and the <i>p</i> -value = 0.0244.	
	· · · · · · ·
"Because the <i>p</i> -value of	, we reject There is convincing
is their	who would say that
IS (ITERI What Should We Take Away?	diners norm
How do we make a conclusion in a test for a popul	ation proportion?
There are two possible conclusions:	
Because the p-value of	we Ha There
convincing the	, we, nontext]
Because the p-value of	we Ha There
convincing	that [state H ₂ in context]
convincing	
Remember to:	
• compare the to	
Include a conclusion about H ₂	

	Name	9
AP Statistics CED 6.6 Daily Video 2		
Concluding a Test for a Population Pro	portion	
What Will We Learn?		
How do we perform a complete significance	test for a popu	ation proportion?
2005 #4		
Some boxes of a certain brand of breakfast of inside the box. The company that makes the percent of the boxes. However, based on th group of students believes that the proporti- group of students purchased 65 boxes of the student found a total of 11 vouchers for free	cereal include a e cereal claims th eir experiences on of boxes with e cereal to inves video rentals in	voucher for a free video rental nat a voucher can be found in 20 eating this cereal at home, a n vouchers is less that 0.2. This stigate the company's claim. The the 65 boxes.
Suppose it is reasonable to assume that the random sample of all boxes of this cereal. Ba students' belief that the proportion of boxes statistical evidence to support your answer.	65 boxes purch ased on this sam with vouchers i	ased by the students are a apple, is there support for the s less than 0.2? Provide
2005 #4		
1. State the Hypotheses:		
H_0 : vs H_a :, where μ) =	·
 Identify the Significance Level: Since none Identify the procedure for the test: 	e stated, use ∝ =	=
4. Check the conditions:		
● sample of boxes □		
Assume the sample size (65)	of the	size 🗆
• and		
2005 #4 5. Find ρ̂ = =	(Since this is < ().2, this is evidence for H_a .)
 6. Calculate the test statistic: *Note this value is less than one standard deviation be the mean, which does not appear to be that unusual. 	pelow Z =	
7. Do Normal Distribution Calculation: Because <i>H</i> _a : <i>p</i> < .2, we want to <u></u>).Draw and shade the graph to the right.	find P(z ≤	
Then use technology or Table A to calculate p-value =	the actual	

	Name
2005 #4	
8. Make conclusion:	
Because the	, we There is
convincing statistical evide	ence that the proportion of
is less tha	in
What Should We Take Away?	
How do we perform a complete sig	gnificance test for a population proportion?
Make sure to:	
State the and	hypotheses, making sure to define the
·	
Identify the	·
Identify the	you are using.
Verify the	for the procedure are (with evidence!)
Calculate the	and
 Make a conclusion based or 	n the (You do need to
interpret the	_ unless specifically asked.)

Name	è
------	---

AP Statistics CED U6.7 Daily Video 1 (Skill 1.B)

Potential Errors When Performing Tests

What Will We Learn?	
How do we identify Type Land Type II errors?	
How do we interpret Type Land Type II errors?	
Type Tand Type II Errors There are two possible conclusions we can make in a significance test:	
Conclusion 1: If the, we reject If this case, there is	
statistical evidence for	
If we find convincing evidence for H_a , but H_0 is actually, then we made a	
A Type Terror occurs when the hypothesis is true and is	
().	
Conclusion 2: If the , we to reject . In this case, there is	
convincing statistical for H_a .	
5	
If we don't find convincing evidence for H_a but H_0 is actually, then we made a	
A Type II error occurs when the Hypothesis is false and	is
).	
Type I and Type II Errors (Fill in the table as you watch the video.)	
Table of Errors	
Actual Population Value	
H _o true H _A true	
Signature H_0 true H_A true Reject H_0 Image: H_0 true Image: H_0 true	
How How Haw Reject How How How	
Sign Ho Hue HA Hue Reject Ho Fail to Fail to <t< td=""><td></td></t<>	
Yog Ho Hue Reject Ho Reject Ho Fail to Reject Ho Reject Ho Reject Ho	

Does Green = More Natural?

To investigate if high school students associate the color green with being more natural, two student researchers randomly selected 30 students from their school. Each subject was asked to taste two cups of lemonade in random order and state which one tasted more natural. One of the cups was green and the other cup was white. Unknown to the taste testers was the fact that both cups contained the same brand of lemonade. Of the 30 students, 18 stated that the lemonade in the green cup tasted more natural. Is there convincing statistical evidence at the $\alpha = 0.05$ significance level that more than half of all students at this school would choose the green cup?

-	•	• •
From	previous	videos.
	previeus	10000

• H_0 : $n = 0.50$ vs H_1 : $n > 0.50$ where $n =$ the proportion of all students at this school who would
choose the green cup.
Does Green = More Natural?
Type I: The researchers convincing evidence that of all
students at this school would choose the green cup, but the actual percentage is
Type II: The researcher convincing evidence that more than 50% of all
students at this school would choose the green cup, but the actual percent is
Does Green = More Natural?
Which error is more consequential?
If these student researchers get hired in a marketing department:
 A would lead them to use green in the branding of a food and beverage
items when people associate green with being more natural.
This seems risk, unless green ink costs a lot.
 A would lead them to use green in the branding of food and
beverage items when people associate green with being more natural.
This would result in a
is more consequential because a isn't very harmful, but a
would reduce income.
*Note: It is always the case that a is more consequential, it
depends on the of the problem.
What Should We Take Away?
How do we identify Type I and Type II errors?
A occurs when the hypothesis is and is
Inis is sometimes called a
A occurs when the hypothesis is and is
How do we interpret Type I and Type II errors?
Type I: We convincing evidence that [H_a in context], when H_a isn't actually .
Type II: We convincing evidence that $[H_a$ in context], when H_a is actually
-

AP Statistics CED U6.7 Daily Video 2 (Skill)

What Will We Learn? How do we calculate the probabilities of Type I and Type II errors? What factors affect the power of a test and the probabilities of errors in significance testing? Type I Errors When the hypothesis is, the probability of a is equal to the That is $P(Type error) = \alpha$. Type I Errors Because the significance level of α is the probability of a, the consequences of a Type I error influence our choice of Why not make $\alpha = 0.000001$ to minimize the of a Type I error? If α is that small, it makes it difficult to find convincing evidence for H_a . All other things being equal, All other things being equal,		
How do we calculate the probabilities of Type I and Type II errors? What factors affect the power of a test and the probabilities of errors in significance testing? Type I Errors When the		
What factors affect the power of a test and the probabilities of errors in significance testing? Type I Errors When the		
Type I Errors When the hypothesis is, the probability of a is equal to the That is $P(Type error) = \alpha$. Type I Errors Because the significance level of α is the probability of a, the consequences of a Type I error Why not make $\alpha = 0.000001$ to minimize the of a Type I error? If α is that small, it makes it difficult to find convincing evidence for H_a . All other things being equal,		
When the hypothesis is, the probability of a is equal to the That is $P(\text{Type I error}) = \alpha$. Type I Errors Because the significance level of α is the probability of a, the consequences of a Type I error influence our choice of Why not make $\alpha = 0.000001$ to minimize the of a Type I error? If α is that small, it makes it difficult to find convincing evidence for H_a . All other things being equal, the probability of a Type I error the probability of a Type I error		
That is <i>P</i> (Type I error) = \propto . Type I Errors Because the significance level of \propto is the probability of a, the consequences of a Type I error influence our choice of Why not make \propto = 0.000001 to minimize the of a Type I error? If \propto is that small, it makes it difficult to find convincing evidence for <i>H</i> _a . All other things being equal, the probability of a Type I error the probability of a		
Type I Errors Because the significance level of α is the probability of a, the consequences of a Type I error Why not make $\alpha = 0.000001$ to minimize the of a Type I error? If α is that small, it makes it difficult to find convincing evidence for H_a . All other things being equal, the probability of a Type I error		
Type I Errors Because the significance level of \propto is the probability of a, the consequences of a Type I error Why not make $\propto = 0.000001$ to minimize the of a Type I error? If \propto is that small, it makes it difficult to find convincing evidence for H_a . All other things being equal, the probability of a Type I error the probability of a Type I error		
Because the significance level of \propto is the probability of a, the consequences of a Type I error influence our choice of Why not make $\propto = 0.000001$ to minimize the of a Type I error? If \propto is that small, it makes it difficult to find convincing evidence for H_a . All other things being equal, the probability of a Type I error the probability of a		
a Type I error influence our choice of of a Type I error? If ∝ is that small, it makes it difficult to find convincing evidence for H _a . All other things being equal, the probability of a Type I error the probability of a Type I error		
make $\propto = 0.000001$ to minimize the of a Type I error? If \propto is that small, it makes it difficult to find convincing evidence for H_a . All other things being equal, the probability of a Type I error the probability of a Type I error		
difficult to find convincing evidence for <i>H</i> _a . All other things being equal, the probability of a Type I error the probability of a		
All other things being equal, the probability of a Type I error the probability of a		
the probability of a		
Power and Type II Errors		
In many contexts, a is more consequential.		
The probability ofa Type II error =		
····· processing of a rype in orient		
The is the probability that test will reject a false null		
hypothesis That is the probability that we find convincing evidence for		
when is really true		
$P(T_{VDP} error) =$		
(Type II enol) =		
Does Green = More Natural?		
To investigate if high school students associate the color green with being more natural two		
student researchers randomly selected 30 students from their school. Each student was		
student researchers randomly selected 50 students nom their school. Each student was		
asked to taste two cups of lemonade in random order and state which one tasted more		
testers was the fact that both cups contained the same brand of lemonade		

From previous videos:

• $H_0: p = 0.50$ vs $H_a: p > 0.50$, where p = the proportion of all students at this school who would choose the green cup.

|--|

Does Green = More Natural?
Suppose the researchers use $\propto = 0.05$ and that the power of the test against H_a of $p = 0.64$ is 0.45. Interpret the power in context. Then find the probability of a Type I and a Type II error.
If the proportion of students who would choose the green cup is, there is a probability of finding convincing evidence that more that of students would choose the green cup.
$P(Type error) = \propto =$
<i>P</i> (Type II error) = 1 – power = =
What Factors Affect Power?
Assuming everything else remains the same, the power of a test will be
(and the probability of a Type II error will be) when:
1. The size
2. The level increase (<) increases.
3. The decreases.
4. The parameter value is father from the
What Should We Take Away?
How do we calculate the probabilities of Type I and Type II errors?
<i>P</i> (Type I error) =
<i>P</i> (Type II error) =
The reject a false
·
What factors affect the power of a test and the probabilities of errors in significance testing?
1. The (n)
2. The (¤)
3. The
4. The between the parameter and the .

AP Statistics CED U6.8 Daily Video 1 (Skill 4.C)

Confidence Intervals for the Difference of Two Proportions

What Will We Learn?
How do we identify an appropriate confidence interval procedure for a difference in proportions?
How do we verify the conditions for calculating a confidence interval for a difference in proportions?
Please Trees, Don't Leave!
A disease is killing many trees in your state. Random samples of trees from two different large
forests, one at high elevation and on at low elevation, reveal that 36 of 240 trees at high elevation
and 25 of 200 trees at low elevation died from the disease. Calculate and interpret a 90%
confidence interval for the difference (high-low) in the proportions of all trees that have died from the
disease at these elevations.
Identifying the Procedure
When the goal is to estimate a difference in proportions, we use a
This procedure is appropriate for estimating a difference in proportions when:
 have been selected (one from each of populations),
 Subjects are assigned to groups in an
Check the Conditions
Remember that for inference procedures in AP Statistics, you verify that the
for using that procedure are
In general, you should check for:
 in the methods used to, and
that the appropriate distribution has the correct
Conditions: Random Samples
:
To check for independence:
1. Data are collected using samples (one from population).
2. When sampling replacement, the sample size is less than or equal to
of the population size for
To check that the shape of the sampling distribution is approximately normal:
3. The number of successes and failures in the samples are all at least
In other words: $n_1 \hat{p}_1 \ge n_1(1 - \hat{p}_1)$ 10; AND $n_2 \hat{p}_2 \ge n_2 \hat{p}_2$ 10.
Conditions: Treatment Groups
from a randomized :
To check for independence:
1. Data are collected from groups that have been assigned in an
To check that the shape of the distribution is approximately normal:
2. The number of successes and failures in both groups are at least
In other words: $n_1 \hat{p}_1 > \dots n_1(1 - \hat{p}_1) = 10^{\circ} \text{ AND } n_2 \hat{p}_2 > \dots n_2(1 - \hat{p}_2) = 10^{\circ}$

	Name
Checking the conditions	
Random samples of trees from two diffe	rent large forests, one at high elevation and on at low
elevation, reveal that 36 of 240 trees at l	high elevation and 25 of 200 trees at low elevation died from
the disease. Check if the conditions for	calculating a confidence interval are met.
	J
Let = high elevation and = lov	v elevation.
1. A sample of	trees at high elevation was selected. \Box
A sample of	trees at low elevation was selected. \Box
2. 240 trees is 0	f all trees in a forest.
200 trees is o	f all trees in a forest. \Box
$3. n_1 \hat{p}_1 = = 36$	$10; n_1(1 - \hat{p}_1) = = 204 10.$
$n_2 \hat{p}_2 = = 25$	$10: n_2(1 - \hat{p}_2) = = 175 = 10.$
The are	
Practice is a Drag	
Drag suits are specially designed swims	uits intended to increase drag and make it harder for
swimmers to swim. If drag is really incre	ased swimmers should swim more slowly. Swimmers wear
drag suits during practice to increase the	e intensity of their workouts. Do drag suits really work?
Two student researchers randomly assig	ned 23 swimmers to wear a drag suit and 24 swimmers to
wear their regular suits during a 100-me	ter freestyle race in practice. The recorded whether the
swimmers were slower than their average	e time. Of the 23 swimmers who wore a drag suit 13 had a
time slower than their average. In the o	roup that wore their regular suits 8 were slower than their
average time. Check if the conditions for	or calculating a confidence interval are met
Practice is a Drag	
Two groups of swimmers were	assigned to wear suits or
rwo groups or swimmers were	who wore drag suits were slower than their average
suits	who were drag suits were slower than their average,
Lot - drag quit and - regular	su út
Let = drag suit and = regulars	pad to wear either drag suite or regular suite
	\Box \Box \Box \Box \Box \Box \Box
2. IIDPD = =	$ = \square $ and $n_D(1 - p_D) = _$
$n_{R}\rho_{R} = ___$	$_$ \square and $n_{R}(1 - p_{R}) = _$
Mile at Chandel Mile Tallas Asses 2	
VVnat Snould VVe Take Away?	
How do we identify an appropriate confi	dence interval procedure for a difference in proportions? r
A	
How do we verify the conditions for calc	ulating a confidence interval for a difference in proportions?
1 samples or	from a randomized experiment.
2. vvnen sampling without replacement,	samples sizes are
of the population size. (Doesn't apply to	.)
3. The counts of successes and failures a	are
$n_1 \hat{p}_1 \ge _, n_1(1 - \hat{p}_1) _ 10; \text{AND } n_2 \hat{p}_1$	$\hat{D}_2 \ge $, $n_2 \hat{p}_2 $ 10

AP Statistics CED U6.8 Daily Video 2 (Skill 3.D)

Confidence Intervals for the Difference of Two Proportions

What Will We Learn?
How do we determine the margin of error when estimating a difference in proportions?
How do we calculate a confidence interval for a difference in proportions?
Please Trees, Don't Leave!
A disease is killing many trees in your state. Random samples of trees from two different large
forests, one at high elevation and on at low elevation, reveal that 36 of 240 trees at high elevation
and 25 of 200 trees at low elevation died from the disease. Calculate and interpret a 90%
confidence interval for the difference (high-low) in the proportions of all trees that have died from the
disease at these elevations.
Calculating the Margin of Error
In AP Statistics, confidence intervals have the form:
Cl =+
The margin of error described how much a value of a is likely to
vary from the value of the corresponding
The margin of error is determined by factors:
 How much the typically varies from the
How we want to be in our estimate.
margin of error = ()()
Calculating the Margin of Error
Margin of error = (critical value)()
The standard error of a statistic is an of the of the
distribution of the
Because we don't know the value of p_1 or p_2 , we replace them with \widehat{p}_1 and \widehat{p}_2 to get the
$\underline{\qquad} = \frac{ \hat{p}_1(1-\hat{p}_1) }{n} + \frac{\hat{p}_2(1-\hat{p}_2)}{n}$
$\sqrt{n_1}$ n_2
Calculating the Margin of Error
margin of error = ()(standard error of statistics)
The is a multiplier that makes the margin of error enough
to give a amount of confidence that the the value being
estimated.
For confidence intervals for a, the critical values represent
the C% of the standard normal
distribution where C% is the approximate for a proportion.
Calculating the Margin of Error
margin of error = (critical value)(standard error of statistic)
In the diseased trees example, we are asked to construct a 90% confidence
interval. To find the of for a 90% confidence
interval, find the boundaries encompassing the 90% of the $-z^* = -1.645$ $z^* = 1.645$
normal curve. The critical value is z* =

Na	m	е
----	---	---

Calculating the Confidence Interv	/al	
CI =	<u>+</u> , which translates to	
CI =	<u>+ ()()</u>	
Define identifiers: Let 1 =	and Let 2 =	
Calculate $\hat{p}_1 = $	and \widehat{p}_2 =	
Identify point estimate =	and z* =	
Insert values and calculate the		
CI:	$CI = (__) \pm __\sqrt{__(__)} + __(__)$	
Cl =		
Calculating the Confidence Interv	/al	
You can find the information for c	reating a confidence interval for two proportions on your AP	
Statistics formula sheet. Take a mi	inute to locate and highlight them now.	
Who's a Good Dog?		
A company that manufactures tick	< repellent for dogs has developed a new formula that has less odor	
than their old formula. However,	if the new formula doesn't prevent ticks as well as the old formula,	
dog owners won't buy the new fo	rmula. What is the difference in the effectiveness of these two	
formulas? An experiment was con	ducted with 160 dogs volunteered by their owners. The dogs were	
randomly assigned a formula: 80 t	to the new and 80 to the old formula.	
After being treated, the dogs played for 1 hour in a heavily wooded area known to have many ticks. Of the dogs treated with the new formula, 12 got ticks, compared to 25 dogs treated with the old formula. Calculate a 95% confidence interval for the difference (<i>new – old</i>) in the true proportion of dogs like the ones in this study that would get ticks.		
Who's a Good Dog?		
Define identifiers:	and	
Calculate $\hat{p}_{N} = $	and $\hat{p}_0 =$	
Identify point estimate =	and z* =	
Insert the values and calculate CI:	$CI = (_) \pm _ \sqrt{_ (_) + _ (_)}$	
The CI =		
What Should We Take Away?		
How do we determine the margin	of error when estimating a difference in proportions?	
margin of error = ()()		
$= z^* \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$		
How do we calculate a confidence interval for a difference in proportions?		
$(\hat{p}_1 - \hat{p}_2) \pm z^* \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n}}$	$+\frac{\hat{p}_2(1-\hat{p}_2)}{n_2}$	
$\sqrt{n_1}$	** <u>é</u>	

Name_____

Name
AP Statistics CED U6.9 Daily Video 1 (Skill 4.B)
Claims: Confidence Intervals for Population Proportion Differences
What Will We Learn?
How do we interpret a confidence interval for a difference of proportions?
How do we justify a claim based on a confidence interval for a difference in proportions?
Please Trees, Don't Leave!
A disease is killing many trees in your state. Random samples of trees from two different large forests, one at high elevation and on at low elevation, reveal that 36 of 240 trees at high elevation and 25 of 200 trees at low elevation died from the disease. Calculate and interpret a 90% confidence interval for the difference (<i>high-low</i>) in the proportions of all trees that have died from the disease at these elevations.
Interpreting the Confidence Interval
In general, here is how to interpret a confidence interval for a population parameter:
"We are confident that the from to captures the
··
From a previous video (6.8, Video 2), the 90% confidence interval for the diseased trees example is -0.029 to 0.079. So, we would interpret that as:
"We are confidence that the interval from captures the
in the proportion of that have died
from the disease."
Justifying a Claim
Wildlife biologists must decide how to use their limited resources to battle the disease. If the disease seems to be more damaging at one of the elevations, they will use more resources to fight the disease at that elevation. Is there convincing evidence that the disease is more lethal at one of the elevations?
Ponder: If the disease is lethal in both forests, the in the proportion of all trees that have died from the disease would be
Because is in the 90% confidence interval (), 0 is a value for $p_H - p_L$, the difference (<i>high-low</i>) in the proportion of trees that have died from the disease. Thus, there convincing evidence that the disease is more lethal at one of the elevations.

Who's a Good Dog?
A company that manufactures tick repellent for dogs has developed a new formula that has less odor than their old formula. An experiment was conducted with 160 dogs volunteered by their owners. The dogs were randomly assigned a formula: 80 to the new and 80 to the old formula. Of the dogs treated with the new formula, 12 got ticks, compared to 25 of 80 dogs treated with the old formula.
Who's a Good Dog?
The 95% confidence interval for the difference (<i>new-old</i>) in the true proportion of dogs such as the ones in the study that would get ticks is -0.1625 ± 0.1282 .
(a) Interpret the confidence interval.
(b) Based on the interval, is there convincing evidence that the new formula is better than
the old formula at preventing ticks on dogs such as the ones in this study?
Who's a Good Dog?
(a) Interpret the confidence interval.
Create the interval: -0.1625 <u>+</u> 0.1282 =
Write interpretation: We are confidence that the interval from to
captures the in the proportion of dogs such as
theses that would get ticks when using these two repellents.
Who's a Good Dog?
(b) Based on the interval, is there convincing evidence that the new formula is better than
the old formula at preventing ticks on dogs such as the ones in this study?
Because in the interval () are less than,
there convincing evidence that the formula is better than the
formula at preventing ticks on dogs
What Should We Take Away?
How do we interpret a confidence interval for a difference of proportions?
"We are confident that the interval from to captures the
"
How do we justify a claim based on a confidence interval for a difference in proportions?
If of the values in the confidence interval are with the
claim, there convincing evidence for the claim.
If of the values in the confidence interval are
with the claim, there convincing evidence for the claim.

AP Statistics CED U6.9 Daily Video 2 (Skill 4.D)

Claims: Confidence Intervals for Population Proportion Differences

What Will We Learn?

How do we construct and interpret a confidence interval for difference in proportions?

2006 B #2

A large company has two shifts – a day shift and a night shift. Parts produced by the two shifts must meet the same specifications. The manager of the company believes that there is a difference in the proportions of parts produced with specifications by the two shifts. To investigate this belief, random samples of parts that were produced on each of these shifts were selected. For the day shift, 188 of its 200 selected parts met specifications. For the night shift, 180 of its 200 selected parts met specifications.

(a) Use a 96 percent confidence interval to estimate the difference in the proportions of parts produced within specifications by the two shifts.

(b) Based only on this confidence interval, do you think that the difference in the proportions of parts produced within specifications by the two shifts is significantly different from 0? Justify your answer.

2006 B #2, part (a)	
(a) Use a 96 percent confidence interval to estimate the difference in the pro	portions of parts
produced within specifications by the two shifts.	· · · · · · · · · · · · · · · · · · ·
State: (day-night,) in the proportions of
parts produced within specifications by the two shifts.	
Label Identifiers: Let 1 = and Let 2 =	
Identify Procedure:	
Check conditions:	
1. Random:	
2. Since sampling replacement must check the 10% Condi	tion:
	□
	□
3. Large Counts Condition:	
□	
□	□
The conditions are	
2006 B #2	
Calculate \hat{p}_1 = and \hat{p}_2 =	
Calculate critical value (z^*) by finding the middle 96% of area in a stan	dard normal
distribution =	
Create confidence interval by plugging in	<u>`</u>
$CI = (_) \pm __ = [_]$) <u>+()</u>
values. v	
The confidence interval is from:	
*Note: verify your calculation using technology.	
-	

Name
2006 B #2
Interpret the confidence interval in context:
We are that the interval from capture the
difference in the proportions of parts produced within
specifications for these two shifts.
2006 B #2
(b) Based only on this confidence interval, do you think that the difference in the proportions of parts
produced within specifications by the two shifts is significantly different from 0? Justify your answer.
Because is in the confidence interval, is a plausible value for the
parts produced within
specifications by the two shifts. There convincing that the
proportions of parts produced within specifications by the two shifts is
different from
2006 B #2, BONUS FEATURE!
Interpret the confidence level. (This wasn't asked on the exam!)
If possible samples of part from each shift were selected and a
confidence interval was constructed from each pair of samples, then of all these
intervals would succeed in the difference (<i>day-night</i>) in the proportion of
all parts produced within specifications by the two shifts.
What Should We Take Away?
How do we construct and interpret a confidence interval for difference in proportions?
Be sure to:
 the difference in proportions you are trying to estimate.
Indicate the of the difference.
Define any you use.
• the you are using.
 that the for the procedure are met.
• the confidence interval.
• the interval in .

AP Statistics CED U6.10 Daily Video 1 (Skill 1.F)

Setting up a Test for the Difference of Two Population Proportions

What Will Wall carn?
Vinat vin ve Learn:
How do we state a null hypothesis in a test for a difference in proportions?
How do we state an alternative hypothesis in a test for a difference in proportions?
The Structure of Unit 6
Unit 6 focuses on data that can be summarized by calculating the proportion of
in a sample or treatment group.
Topics 6.2 – 6.7 \rightarrow confidence intervals and significance tests for a
Topics 6.8 – 6.9 \rightarrow confidence intervals for a
Topics 6.10 – 6.11→ significance tests for a
Some Reminders
Confidence Intervals
 used to the value of a
 an interval of values for a parameter based on the data.
Significance Tests
 used to about the value of a population
• assess whether the evidence supporting a claim is likely or unlikely to happen by
Effective Evedrops?
Bacterial conjunctivitis (pink eye) causes eve irritation in those unlucky enough to contract it. Can eye
drops containing azithromycin make the recovery faster? In one clinical trial evedrops containing
azithromycin were compared to a placebo evedrop among 279 patients suffering from pink eve
The results? Of the 130 patients who were randomly assigned azithromycin drops, 82 were cured
within a week. Of the 149 patients who were randomly assigned placebo drops, 52 were cured within
a week. Do these results give convincing evidence that azithromycin is more effective at curing pink
a week. Do these results give convincing evidence that azitinomyclin is more ellective at curing pink
In a statistical test the humethesis is often a claim of "
In a statistical test, the hypothesis is often a claim of difference of change.
In the effective eyedrops example, the null hypothesis is that there is
IIKE the ones in the study who would be
using either of the drops.
Symbolically the null hypothesis would say:
$H_0:$ = OR $H_0:$ =
where p_1 = the proportion of pink eye patients like the ones in
who would be cured by azithromycin drops
p_2 = the proportions of pink eye patients like the one in
who would be cured by placebo drops
Alternative Hypothesis
In a statistical test, the hypothesis is the claim that we to support
with from the data collected.

Ν	а	m	١	е
---	---	---	---	---

In the effective eyedrops example, the researchers wanted to know if the azithromycin drops were
effective. So, the hypothesis is that of patients
who would be cured by azithromycin drops is
than the proportion for placebo drops.
Symbolically the hypotheses would say:
$H_0:$ = OR $H_0:$ =
H_{A} : = OR H_{A} : =
where p_1 = the proportion of pink eye patients like the ones in
who would be cured by azithromycin drops
p_2 = the proportions of pink eye patients like the one in
who would be cured by placebo drops
Stating Hypotheses: Summary
For hypotheses about a of proportions:
The is a statement about, typically H_0 , $p_1 - p_2 =$
The always contains a strict, typically
$H_{A}: p_1 - p_2 _ 0, H_{A}: p_1 - p_2 _ 0, OR H_{A}: p_1 - p_2 _ 0$
When the inequality is or, the alternative is called ""
When the inequality is, the alternative is called "two-sided."
The choice of alternative is determined by the and should
be stated begins.
Never refer to statistics (such as or) in the!
Remember to an parameters you use. (Specifically define and)
A Bright Idea
A marketing agent wonders if there is a difference in the percentage of residents in two cities who
have purchase sunglasses during the last 12 months. Of 400 randomly selected residents of Soltown,
314 purchased sunglasses in the last 12 months. Meanwhile, a random sample of Brightville residents
revealed that 452 of 550 residents purchased sunglasses in the last 12 months. Do these data give
convincing evidence of a difference in the proportions of residents who have purchased sunglasses in
the past 12 months in these two cities? State appropriate hypotheses for the agent's test.
*Note: When you are asked if "data gives convincing evidence" about a claim that is an indication that you are looking at a
conducting a significance test.
A Bright Idea
Do these data give convincing evidence of a difference in the proportions of residents who have
purchased sunglasses in the past 12 months in these two cities?
H ₀ : OR H ₀ : Pay close attention to the wording when
Ha: OR Ha: choosing the
where: p ₁ = appropriate inequality!!
p ₂ =
What Should We Take Away?
How do we state a null hypothesis in a test for a difference in proportions?
$H_0: p_1 = p_2;$ remember to clearly parameter
How do we state an alternative hypothesis in a test for a difference in proportions?
$H_{A}: p_{1} > p_{2}$ $H_{A}: p_{1} < p_{2}$ $H_{A}: p_{1} \neq p_{2}$

AP Statistics CED 6.10 Daily Video 2 (Skill)

Concluding a Test for a Population Proportion
What Will We Learn?
How do we identify an appropriate significance test procedure for a difference in proportions?
How do we verify the conditions for performing a significance test for a difference of proportions?
Effective Eyedrops?
Bacterial conjunctivitis (pink eye) causes eye irritation in those unlucky enough to contract it. Can
eye drops containing azithromycin make the recovery faster? In one clinical trial, eyedrops
containing azithromycin were compared to a placebo eyedrop among 279 patients suffering from
pink eye.
The results? Of the 130 patients who were randomly assigned azithromycin drops, 82 were cured
within a week. Of the 149 patients who were randomly assigned placebo drops, 74 were cured
within a week. Do these results give convincing evidence that azithromycin is more effective at
curing pink eye than a placebo for subjects like the ones in this study?
Effective Eyedrops?
Bacterial conjunctivitis (pink eye) causes irritation in those unlucky enough to contract it. Can eye
drops containing azithromycin make the recovery faster?
From a previous video:
$H_0: p_1 = p_2 \text{OR} H_0: p_1 - p_2 = 0$
$H_{A}: p_{1} = p_{2} \text{ OR } H_{A}: p_{1} - p_{2} = 0$
where p_1 = the proportion of pink eye patients who
would be cured by azithromycin.
<i>p</i> ₂ = the proportion of pink eye patients who
would be cured by azithromycin.
Identifying the Procedure
You have already learned about a significance test for a population proportion involving
sample. But in this case, there are groups.
When the goal is to test a claim about a in proportions, we use a:
This procedure is appropriate when:
 random samples have been selected (from each of populations,
or
 subjects are randomly assigned to groups in an experiment.
Checking the Conditions
Remember that for all inference procedures in AP Statistics you must that the
for using that procedure are met.
In general, you should check for:
 in the methods used to collect the data, and
 that the appropriate distribution has the correct shape.
In the case of a test for a difference of proportions, the conditions for
random samples look a little different than for groups in a
experiment.

Checking the Conditions
Before checking the for a two-sample z test for a difference in proportions, first compute the
in both samples or groups. For the
effective eyedrops example, the hypothesis is the treatments are effective.
If that's true, then the best estimate of their effectiveness is to all the patients from
and calculate the proportion who were
cured.
Checking the Conditions
Azithromycin group: cured out of
Placebo group: cured out of
Combined () proportion of successes \hat{p}_c :
$\hat{p}_{c} = \frac{\text{combined number of successes}}{1 + 1 + 1 + 1 + 2} = \frac{1}{1 + 1 + 1 + 2} = \frac{1}{1 + 2} =$
combined number of observations n_1+n_2 + (pointed proportion)
Conditioner Dendem Semulae
For a for a In proportions involving
samples from populations:
I o check for Independence:
1. Data are collected using samples. (one for each population.
2. When sampling replacement, the sample size is less than or equal to
of the population size for samples.
To check that the of the distribution is approximately normal:
3. The number of successes and failure in the samples are all at least
In other words, $n_1 \hat{p}_c$ 10, $n_1(1 - \hat{p}_c)$ 10, $n_2 \hat{p}_c$ 10, and $n_2(1 - \hat{p}_c)$ 10
Conditions: Experiments
For a groups from a
randomized:
To check for independence:
1. Data are collected from groups that have been assigned in an
experiment.
To check that the shape of the distribution is approximately normal:
2. The number of successes and failures in groups are all at least
In other words, $n_1 \hat{p}_c$ 10, $n_1 (1 - \hat{p}_c)$ 10, $n_2 \hat{p}_c$ 10, and $n_2 (1 - \hat{p}_c)$ 10
Checking the Conditions:
In the effective eyedrops study, 82 of the 130 patients that used azithromycin drops and 74 of the
149 patients given placebo drops were cured after one week. Check if the conditions for performing
the significance test are met.
Let 1 = and 2 =
1. A group of 130 patients were assigned to use azithromycin drops. \Box
A group of 149 patients were assigned to use placebo drops.
2. $n_1 \hat{p}_c = _$ = 10, and $n_1(1 - \hat{p}_c) = = 10 \square$
$n_2 \hat{p}_c = 10$ and $n_2(1 - \hat{p}_c) = 10$

Name_____

A Bright Idea		
A marketing agent wonders if there is a difference in the percentage of residents in two cities who		
have purchase sunglasses during the last 12 months. Of 400 randomly selected residents of		
Soltown, 314 purchased sunglasses in the last 12 months. Meanwhile, a random sample of		
Brightville residents revealed that 452 of 550 residents purchased sunglasses in the last 12 months.		
Do these data give convincing evidence of a difference in the proportions of residents who have		
purchased sunglasses in the past 12 months in these two cities? Check if the conditions for		
performing a significance test are met.		
A Bright Idea		
Check if the conditions for performing a significance test are met.		
First, calculate the (pooled) proportion of: $\hat{p}_c = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$		
Let = Soltown and = Brightville		
1. A sample of Soltown residents was selected.		
A sample of Brightville residents was selected.		
2. 400 residents is of the population in a city. \Box		
550 residents is of the population in a city. \Box		
3. $n_1 \hat{p}_c = ____= __10$, and $n_1(1 - \hat{p}_c) = ___= __10$		
$n_2\hat{p}_c = ____= ___10$, and $n_2(1 - \hat{p}_c) = ___= ___10$ \Box		
*Note: Remember to use the combined (pooled) proportion in both of these.		
What Should We Take Away?		
How do we identify an appropriate significance test procedure for a difference in proportions?		
A		
How do we verify the conditions for performing a significance test for a difference of proportions?		
1. Two from a		
randomized		
2. When sampling replacement, sample sizes are		
to of the population sizes (This DOESN'T apply to)		
3. The counts of successes and failures are at least		
In other words, $n_1 \hat{p}_c$ 10, $n_1(1 - \hat{p}_c)$ 10, $n_2 \hat{p}_c$ 10, and $n_2(1 - \hat{p}_c)$ 10		

AP Statistics CED 6.11 Daily Video 1 (Skill 3.E)

Carrying Out a Test for the Difference of Two Population Proportions

What Will We Learn?

How do we calculate an appropriate test statistic in a test for a difference in proportions? How do we calculate a *p*-value in a test for a difference of proportions?

Effective Eyedrops?

Bacterial conjunctivitis (pink eye) causes eye irritation in those unlucky enough to contract it. Can eye drops containing azithromycin make the recovery faster? In one clinical trial, eyedrops containing azithromycin were compared to a placebo eyedrop among 279 patients suffering from pink eye. The results? Of the 130 patients who were randomly assigned azithromycin drops, 82 were cured within a week. Of the 149 patients who were randomly assigned placebo drops, 74 were cured within a week. Do these results give convincing evidence that azithromycin is more effective at curing pink eye than a placebo for subjects like the ones in this study?

Effective Eyedrops?

From a previous video:

 $H_0: p_1 = p_2 \quad \text{OR} \quad H_0: p_1 - p_2 = 0$ $H_{A}: p_{1} = p_{2}$ OR $H_{A}: p_{1} - p_{2} = 0$

where p_1 = the _____ proportion of pink eye patients _____

who would be cured by azithromycin.

p₂ = the _____ proportion of pink eye patients _____ who would be cured by azithromycin.

Calculating	a Test	Statistic
-------------	--------	-----------

Calculating a Test Statistic In the effective eyedrops study:	$\hat{p}_1 - \hat{p}_2 = \underline{\qquad} - \underline{\qquad} = \underline{\qquad}$	
This is for <i>H</i> _a : We want to know how by alone when <i>H</i>		or
After verifying the	_ are met, calculate the	test statistic:

standardized test statistics = _____

Calculating a Test Statistic

For a ______ for the difference of proportions the standardized test statistic is:

$$Z = \frac{(\hat{\rho}_1 \cdot \hat{\rho}_2) \cdot 0}{\sqrt{\frac{\hat{\rho}_c(1 \cdot \hat{\rho}_c)}{n_1} + \frac{\hat{\rho}_c(1 \cdot \hat{\rho}_c)}{n_2}}} = \frac{(\hat{\rho}_1 \cdot \hat{\rho}_2) \cdot 0}{\sqrt{\hat{\rho}_c(1 \cdot \hat{\rho}_c)(\frac{1}{n_1} + \frac{1}{n_2})}} \longleftarrow$$

The second version is the one you will find on the AP Statistics Formula Sheet.

where \hat{p}_c is the combined (_____) proportion of successes.

$$\widehat{p}_{c} = \frac{combined \ number \ of \ successes}{combined \ number \ of \ observations} = \frac{X_{1} + X_{2}}{n_{1} + n_{2}} = (\text{pooled proportion})$$

Э

AP Statistics CED 6.11 Daily Video 2 (Skill 4.B)

Carrying Out a Test for the Difference of Two Population Proportions

What Will We Learn?

How do we interpret the *p*-value for a significance test for a difference in proportions? How do we state a conclusion for a significance test for a difference in proportions?

Effective Eyedrops?

Bacterial conjunctivitis (pink eye) causes eye irritation in those unlucky enough to contract it. Can eye drops containing azithromycin make the recovery faster? In one clinical trial, eyedrops containing azithromycin were compared to a placebo eyedrop among 279 patients suffering from pink eye. The results? Of the 130 patients who were randomly assigned azithromycin drops, 82 were cured within a week. Of the 149 patients who were randomly assigned placebo drops, 74 were cured within a week. Do these results give convincing evidence that azithromycin is more effective at curing pink eye than a placebo for subjects like the ones in this study?

Effective Eyedrops?

From a previous video:

where p_1 = the proportion of pink eye patients			
who would be cured by azithromycin.			
p_2 = the proportion of pink eye patients			
who would be cured by azithromycin.			
Additionally, we know that conditions are met.			
Interpreting a <i>p</i> -value			
From previous videos: $\hat{p}_1 - \hat{p}_2 = $, $z = $, and p -value =			
$\hat{p}_1 - \hat{p}_2 = $, is evidence $H_a: \hat{p}_1 - \hat{p}_2 > 0$ because $\hat{p}_1 - \hat{p}_2 = $ > 0.			
The <i>p</i> -value measures how it is to get evidence for H_a as or more			
than the evidence by alone when H_0 is			
Interpreting a <i>p</i> -value			
"Assuming H_0 is, there is a probability of getting a in			
proportions of, by chance alone in			
the assignment (samples)."			
Interpret the <i>p</i> -value of the effective eyedrops example:			
Assuming the difference () in the proportion of pink eye			
patience be cured is 0, there is a			
probability of getting a in proportions of or			
assignment.			
Stating a Conclusion			
p -values \rightarrow test statistic is to occur by chance alone.			
p -values \rightarrow test statistic is to occur by chance alone.			
• Because the p-value of $\leq \propto =$, we reject H_0 .			
There is			
• Because the p-value of > \propto =, we fail to reject H_0 .			
There is			

STATS MEDIC

Name			
Stating a Conclusion			
No significance level was stated in the effective eyedrops example, so we'll use \propto =, which is			
the most significance level.			
• Because the <i>p</i> -value of< \propto =, we reject H_0 .			
There is statistical evidence that the (azithromycin –			
placebo) in the proportions of patients who			
be cured within a week is			
A Bright Idea			
A marketing agent wonders if there is a difference in the percentage of residents in two cities who			
have purchase sunglasses during the last 12 months. Of 400 randomly selected residents of Soltown,			
314 purchased sunglasses in the last 12 months. Meanwhile, a random sample of Brightville residents			
revealed that 452 of 550 residents purchased sunglasses in the last 12 months.			
The <i>p</i> -value for a two-sample <i>z</i> test of the difference (<i>Soltown – Brightville</i>) in proportions is 0.01556.			
Interpret the <i>p</i> -value and make a conclusion at the $\propto = 0.10$ significance level.			
A Bright Idea: Interpret <i>p</i> -value			
From a previous video:			
$H_0: p_s = p_B \text{ or } H_0: p_s - p_B = 0$			
$H_a: p_s \neq p_B$ or $H_a: p_s - p_B \neq 0$ $\hat{p}_s - \hat{p}_B = $, $z = $, and p-value =			
Interpret the <i>p</i> -value:			
Assuming the (Soltown – Brightville) in the proportions of residents			
who have purchased sunglasses during the last 12 months is, there is a probability of			
getting a in sample proportions of or one different in			
direction, by alone in the samples.			
A Bright Idea: State Conclusion			
Because the p-value of > \propto =, we H ₀ . There is			
convincing statistical that the difference (<i>Soltown – Brightville</i>) in the proportions			
of residents who sunglasses during the last 12 months is			
equal to			
What Should We Take Away?			
How do we interpret the p-value for a significance test for a difference in proportions?			
"Assuming H_0 is, there is a probability of getting a in			
proportions of, by chance alone in			
the assignment (samples)."			
How do we state a conclusion for a significance test for a difference in proportions?			
• Because the <i>p</i> -value of $\leq \propto =$, we reject H_0 .			
There is			
• Because the <i>p</i> -value of > \propto =, we fail to reject H_0 .			
There is			

AP Statistics CED 6.11 Daily Video 3 (Skill 4.E)

Carrying Out a Test for the Difference of Two Population Proportions

What Will We Learn?

How do we perform a complete significance test for a difference in proportions?

2012 #4

A survey organization conducted telephone interviews in December 2008 in which 1,009 randomly selected adults in the United States responded to the following question.

At the present time, do you think television commercials are an effective way to promote a new product?

Of the 1,009 adults surveyed, 676 responded "yes." In December 2007, 622 of 1,020 randomly selected adults in the United States had responded "yes" to the same question. Do the data provide convincing evidence that the proportion of adults in the United States who would respond "yes" to the question changed from December 2007 to December 2008?

Hypotheses			
Null:	_ This is a tailed test!		
Alternative:			
where: p_1 = the proportion of	U.S. adults who		
respond "yes" to the question in			
p_2 = the proportion of	U.S. adults who		
respond "yes" to the question in	·		
No was stated, so	we'll use		
Identify the Procedure and Check the Conditio	ns (Be sure to put a ✓ by your conditions!)		
1. Independence: Two	samples of U.S. adults,		
from December 2008 and from December 2007.			
2. 10% Condition:			
is less than of _	U.S. adults in December 2008		
is less than of _	U.S. adults in December 2007		
Combined number of successes	$\hat{p}_c = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$		
	/ *+		
3. Expected Counts ≥ 10:			
The conditions met			

	Name		
Calculating the Test Statistic and p-value			
$\hat{\rho}_1 = \underline{\qquad} \hat{\rho}_2 = \underline{\qquad}$	$\hat{p}_{c} = $		
Test Statistic: $Z = \frac{() - 0}{$	=) 		
Calculate p-value:	\frown		
(Sketch and lable the standard normal curve).			
Calculate the p-value using Table A or techonology			
The p-value =			
	Hint: Is this a one or two-tailed test?		
Conclusion and Interpretation (Use the interpretation your teacher suggests.)			
Because the <i>p</i> -value of	, we would <i>H</i> ₀ .		
There statistical evidence that			
What Should We Take Away?			
How do we perform a complete significance test for	r a difference in proportions?		
Make sure to:			
 State the and hyp 	otheses, define any,		
and indicate the in the difference (>, < or \neq)			
Identify the, (if none provided use)			
Identify the you are using.			
Verify that the for the procedure are met (with!)			
Calculate the and			
Make a based on the p-value. (You do <i>not</i> need to interpret			
the <i>p</i> -value unless specifically asked.)			

