Stats Medic Unit 1: Analyzing Data

Lesson	Learning Targets
1.1 Analyzing Categorical Data	 Use bar graphs and pie charts to analyze data for one categorical variable. Use two-way tables and various bar graphs to analyze data for two categorical variables. Be aware of misleading graphs.
1.2 Representing Categorical Data	 Compare distributions of categorical data using bar graphs and mosaic plots. Determine if two categorical variables are associated.
1.3 Describing Quantitative Data	 Use dotplots, stem and leaf plots, and histograms to analyze quantitative data. Describe the distribution of a quantitative variable (shape, outliers, center, variability).
1.4 Measuring Variability	 Calculate and interpret standard deviation. Identify which summary statistics are resistant and nonresistant to outliers.
1.5 Comparing Quantitative Data	 Identify outliers in a quantitative data set. Use a boxplot to analyze quantitative data. Compare distributions of quantitative data.

Stats Medic Unit 2: Modeling Data

Lesson	Learning Targets
2.1 Percentile	 Calculate and interpret percentiles for quantitative data. Use a cumulative relative frequency graph to analyze quantitative data.
2.2 Location in a Distribution	 Calculate and interpret z-scores for quantitative data. Use z-scores to compare the relative location of values in different distributions.
2.3 Linear Transformations of Quantitative Data	 Determine what happens to the shape, center, and variability when adding/subtracting a constant or multiplying/dividing by a constant for quantitative data. Determine the mean and standard deviation for a standardized (z-score) distribution.
2.4 Normal Distributions and the Empirical Rule	 Model distributions of quantitative data using a density curve, including a normal distribution curve. Use the empirical rule (68-95-99.7 rule) for normal distributions to determine the percent of values in an interval.
2.5 Normal Distributions Calculations	 For a normal distribution, find the proportion of values in a given interval. For a normal distribution, find the value corresponding to a given percentile.

Stats Medic Unit 3: Two-Variable Data

Lesson	Learning Targets
3.1 Scatterplots	 Use a scatterplot to represent the relationship between two quantitative variables. Describe the relationship between two quantitative variables (direction, unusual features, form, strength).
3.2 Correlation	 Estimate and interpret the correlation (r) for two quantitative variables. Interpret the coefficient of determination (r²). Understand that correlation does not imply causation.
3.3 Making Predictions	 Use a linear regression model to make a prediction, being careful about extrapolation. Calculate and interpret a residual. Interpret the slope and y-intercept of a linear regression model.
3.4 Residual Plots	 Understand what is meant by a "least-squares" regression model. Use a residual plot to determine if a linear regression model is appropriate.
3.5 Outliers, High-Leverage, and Influential Points	 Understand how outliers affect the slope and y- intercept of a linear regression model. Calculate the equation of the least-squares regression line given summary statistics.
3.6 Transforming Non-linear Data	 Given non-linear data, use transformations to make the data more linear. Use models for transformed data to make predictions.
3.7 Choosing the Best Model	• Choose the best model for two-variable quantitative data and justify your answer.

Stats Medic Unit 4: Collecting Data

Lesson	Learning Targets
4.1 Simple Random Sample	 Understand how convenience samples and voluntary response samples can lead to bias. Explain how to select a simple random sample (SRS).
4.2 Stratified Random Samples	 Explain how to select a stratified random sample. Understand how the sampling method can affect the bias and variability of estimates about a population.
4.3 Cluster and Systematic Samples	 Explain how to select a cluster sample and a systematic random sample. Understand the advantages and disadvantages of each sampling method.
4.4 Potential Problems with Sampling	 Explain how undercoverage and nonresponse can lead to bias. Understand what conditions can lead to response bias.
4.5 Observational Studies and Experiments	 Explain why a confounding variable can make it difficult to conclude a causal relationship between two variables. Understand the difference between an observational study and an experiment. Identify the experimental units and treatments of an experiment.
4.6 Designing Experiments	 Explain the necessary components of a well-designed experiment. Describe a process for random assignment in an experiment. Explain the placebo effect and the purpose of blinding in an experiment.
4.7 Selecting an Experimental Design	 Describe a randomized block design experiment and explain the benefit. Describe a matched pairs design experiment and explain the benefit.
4.8 Inference and Experiments	• Use simulation to determine if the results from an experiment are statistically significant.
4.9 Scope of Inference	 Explain the purpose of taking a random sample. Explain the purpose of using random assignment in an experiment.

Stats Medic Unit 5: Probability

Lesson	Learning Targets
5.1 Introducing Probability	 Interpret probability as a long-run relative frequency. Understand how the Law of Large Numbers relates to the idea of probability.
5.2 Simulation	 Use a simulation to estimate the probability of an event. Understand what it means for a result to be statistically significant.
5.3 Rules for Probability	 Use the sample space of equally likely outcomes to find probabilities. Use basic rules and notation for probability.
5.4 The Addition Rule	 Use two-way tables and Venn Diagrams to find probabilities. Use the general addition rule to calculate P(A or B) for events that are not mutually exclusive.
5.5 Conditional Probability and Independence	 Calculate and interpret conditional probabilities. Determine if two events are independent.
5.6 Tree Diagrams	 Use the general multiplication rule to calculate P(A and B). Use tree diagrams as a strategy to calculate probabilities.

Stats Medic Unit 6: Random Variables

Lesson	Learning Targets
6.1 Discrete Random Variables	 Analyze and interpret the probability distribution for a discrete random variable. Describe the probability distribution for a discrete random variable (shape, center, variability).
6.2 Continuous Random Variables	 Distinguish between a discrete and a continuous random variable. Calculate probabilities for continuous random variables with uniform and normal distributions.
6.3 Transforming Random Variables	 Describe what happens to the probability distribution of a random variable when adding/subtracting a constant. Describe what happens to the probability distribution of a random variable when multiplying/dividing by a constant.
6.4 Combining Random Variables	 Calculate the mean and standard deviation for the sum or difference of random variables. Find probabilities for the sum or difference of normal random variables.
6.5 Introduction to the Binomial Distribution	 Check conditions for determining if a random variable is binomial. Use the binomial formula to calculate probabilities.
6.6 Parameters for Binomial Distributions	 Use technology to find probabilities for binomial distributions. Calculate and interpret the mean and standard deviation of a binomial distribution.
6.7 Conditions for Inference	 Check the 10% condition when sampling without replacement. Check the Large Counts condition when using a normal approximation for a binomial distribution.
6.8 The Geometric Distribution	 Check conditions for determining if a random variable is geometric. Calculate probabilities for a geometric distribution. Describe the probability distribution for a geometric random variable (shape, center, variability).

Stats Medic Unit 7: Sampling Distributions

Lesson	Learning Targets
7.1 Sampling Distributions	 Distinguish between a statistic and a parameter, and use appropriate notation for statistics and parameters. Understand the definition of a sampling distribution.
7.2 Bias and Variability	 Determine if an estimator is biased or unbiased. Understand why increasing the sample size reduces the variability when estimating a population parameter.
7.3 Sample Proportions	 Describe the shape, center, and variability of the sampling distribution of <i>p̂</i>. Find and interpret probabilities involving the sampling distribution of <i>p̂</i>.
7.4 Differences in Sample Proportions	 Describe the shape, center, and variability of the sampling distribution of p̂₁ - p̂₂. Find and interpret probabilities involving the sampling distribution of p̂₁ - p̂₂.
7.5 Sample Means	 Describe the shape, center, and variability of the sampling distribution of x̄. Find and interpret probabilities involving the sampling distribution of x̄.
7.6 The Central Limit Theorem	 Understand how the shape of the population distribution and the sample size impact the sampling distribution of x Find and interpret probabilities involving the sampling distribution of x
7.7 Differences in Sample Means	 Describe the shape, center, and variability of the sampling distribution of \$\overline{x}_1 - \overline{x}_2\$. Find and interpret probabilities involving the sampling distribution of \$\overline{x}_1 - \overline{x}_2\$.

Stats Medic Unit 8: Confidence Intervals for Proportions

Lesson	Learning Targets
8.1 Interpreting a Confidence Interval	 Use a point estimate and a margin of error to construct a confidence interval. Interpret a confidence interval in context.
8.2 Interpreting a Confidence Level	 Interpret a confidence level in context. Understand how the margin of error is affected by the confidence level and sample size.
8.3 Constructing a Confidence Interval for a Proportion	 Check conditions for constructing a confidence interval for the population proportion, p. Calculate and interpret a confidence interval for p.
8.4 Confidence Intervals for a Proportion	 Use the <u>4C method</u> to construct and interpret a confidence interval for the population proportion, p. Determine the sample size needed for a given margin of error.
8.5 Confidence Intervals for a Difference of Proportions	 Use the <u>4C method</u> to construct and interpret a confidence interval for the difference of proportions, p₁ – p₂. Use a confidence interval for p₁ – p₂ to evaluate a claim.

Stats	Medic	Unit 9:	Significance	Tests for	Proportions
			5		

Lesson	Learning Targets
9.1 Introduction to Significance Tests	 Write hypotheses for a significance test for the population proportion, p. Interpret a <i>p</i>-value and make a conclusion for a significance test for p.
9.2 Conditions and <i>p</i> -value	 Check the Random, 10%, and Large Counts conditions for a significance test for p. Calculate a test statistic and <i>p</i>-value for a significance test for p.
9.3 Significance Tests for a Proportion	• Use the <u>4C method</u> to perform a significance test for p.
9.4 Introduction to Significance Tests for a Difference of Proportions	 Write hypotheses for a significance test for a difference of proportions, p1 – p2. Interpret a <i>p</i>-value and make a conclusion for a significance test for p1 – p2.
9.5 Significance Tests for a Difference of Proportions	• Use the <u>4C method</u> to perform a significance test for $p_1 - p_2$.
9.6 Type I and Type II Errors	• Describe a Type I and Type II error in context and explain the possible consequences of each.
9.7 Power of a Test	 Interpret the power of a significance test. Identify ways to increase the power of a significance test.

Stats Medic Unit 10: Confidence Intervals for Mean

Lesson	Learning Targets
10.1 Constructing a Confidence Interval for a Mean	 Check conditions for calculating a confidence interval for the population mean, μ. Find a critical t* value for a confidence interval for μ.
10.2 Confidence Intervals for a Mean	 Use the <u>4C method</u> to construct and interpret a confidence interval for μ.
10.3 Confidence Intervals for a Difference of Means	 Use the <u>4C method</u> to construct and interpret a confidence interval for the difference of means, μ₁ - μ₂. Use a confidence interval for μ₁ - μ₂ to evaluate a claim.
10.4 Confidence Intervals for a Mean Difference	 Analyze the distribution of differences using a graph and summary statistics. Use the <u>4C method</u> to construct and interpret a confidence interval for the mean difference, μ_{diff}.

Stats Medic Unit 11: Significance Tests for Means

Lesson	Learning Targets
11.1 Introduction to Significance Tests for a Mean	 Write hypotheses for a significance test for a population mean, μ. Interpret a <i>p</i>-value and make a conclusion for a significance test for μ.
11.2 Significance Tests for a Mean	 Use the <u>4C method</u> to perform a significance test for μ. Understand the connection between significance tests and confidence intervals.
11.3 Introduction to Significance Tests for a Difference of Means	 Write hypotheses for a significance test for a difference of means, μ₁ – μ₂. Check conditions for a significance test for μ₁ – μ₂.
11.4 Significance Tests for a Difference of Means	• Use the <u>4C method</u> to perform a significance test for $\mu_1 - \mu_2$.
11.5 Significance Tests for a Mean Difference	 Use the <u>4C method</u> to perform a significance test for a mean difference, μ_{diff}. Distinguish between one-sample paired data and two-sample data.

Stats Medic Unit 12: Chi-Square Tests

Lesson	Learning Targets
12.1 Introduction to Chi- Square Tests	 Write hypotheses for a chi-square test for goodness of fit. Calculate a test statistic and a p-value for a chi-square test for goodness of fit.
12.2 Chi-Square Test for Goodness of Fit	 Use the <u>4C method</u> to perform a chi-square test for goodness of fit. When results of a chi-square test are statistically significant, perform a follow-up analysis.
12.3 Chi-Square Test for Homogeneity	 Calculate expected counts for two-way tables. Use the <u>4C method</u> to perform a chi-square test for homogeneity.
12.4 Chi-Square Test for Independence	 Use the <u>4C method</u> to perform a chi-square test for independence. Distinguish between the three different types of chi-square tests.

Stats Medic Unit 13: Inference for Slope

Lesson	Learning Targets
13.1 Sampling Distribution of a Slope	 Distinguish between statistics and parameters in a regression setting and use appropriate notation. Describe the sampling distribution of sample slopes.
13.2 Confidence Intervals for Slope	 Check conditions for inference for slope. Use the <u>4C method</u> to construct and interpret a confidence interval for slope.
13.3 Significance Tests for Slope	• Use the <u>4C method</u> to perform a significance test for slope.

