Circuit Training

Ready to tackle a circuit covering an entire year of Calculus content? Start with the problem in the upper left box, then search for your answer in a different cell. Mark the new cell #2 and continue in the circuit until you end up back at the beginning. No calculators needed!

Answer:
$$\frac{e^2+5}{4e^2}$$

___1__ Write the equation of the line tangent to the graph of $f(x) = -3x^2 + 5x + 1$ at x = 1 and use it to approximate f(1.2).

Answer: 1

_____ Find the instantaneous rate of change of $g(x) = \ln(x+3)$ at $x = \frac{1}{2}$.

Answer: $\frac{2}{7}$

 $# \underline{\qquad} \int_0^2 x \sqrt{4 - x^2} \, dx$

Answer: $\sqrt{19}$

_____ Let R be the region bounded by the graph of $y = \sqrt{x-3}$, the line x = 4, and the x —axis. Calculate the volume of the solid generated when region R is rotated around the x —axis.

Answer: $\frac{14}{5}$

_____ If $y = \tan\left(\frac{x}{3}\right)$, find $y'\left(\frac{\pi}{2}\right)$.

Answer: 0

_____ $\int_1^e \frac{1}{x} dx$

e point
: point
h(x) to theh initial(3).