Limits, Continuity, Differentiability	Limits, Continuity, Differentiability
Evaluate $\lim_{x \to a} f(x)$	$\lim_{x\to\infty} f(x) \text{ means}$
+	+
Limits, Continuity, Differentiability	Limits, Continuity, Differentiability
$\lim_{x \to a} f(x) \text{ exists if }$	f(x) is continuous
<i>x</i> → <i>a</i>	at x = a if
Limits, Continuity, Differentiability	Limits, Continuity, Differentiability
Emmo, continuity, billerentiability	Emilia, Continuity, Differentiability
f(x) is differentiable	L'hôspital's Rule
at $x = a$ if	_
Derivatives	Derivatives
Limit definition of $f'(a)$	
(Derivative at the point	Limit definition of $f'(x)$ (Equation of derivative
x = a	function)
T	,
Derivatives	Derivatives
$\frac{d}{dx}(c)$	$\frac{d}{dx}(x^n)$
dx	ax
	T

Find end behavior.
Use TFEPLC and rational
function rules comparing the
degree of the numerator and
denominator.

Simplify.
Let
$$x = a$$
.
(Direct substitution)

$$\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x)$$
and
$$\lim_{x \to a} f(x) = f(a)$$

$$\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x)$$

If
$$\lim_{x \to a} \frac{f(x)}{g(x)}$$
 is indeterminate

$$\left(\frac{0}{0} \text{ or } \frac{\infty}{\infty}\right)$$
Then
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

$$f(x)$$
 is continuous
at $x = a$ and
 $\lim_{x \to a^{-}} f'(x) = \lim_{x \to a^{+}} f'(x)$

$$\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}$$

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} \text{ or}$$

$$\lim_{h \to 0} \frac{f(a + h) - f(a)}{h}$$

$$nx^{n-1}$$

()

	т
Derivatives	Derivatives
.1	Product Rule
$\frac{d}{dx}(c(f(x)))$	d
$\frac{dx}{dx} (C(f(x)))$	$\frac{d}{dx}(f(x)\cdot g(x))$
	ax
Derivatives	
Quotient Rule	Chain Rule – Derivative of a
$\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right)$	composite function
$\frac{1}{dx} \setminus \frac{1}{a(x)}$	$d_{(f(a(a)))}$
	$\frac{d}{dx}(f(g(x))) \blacksquare$
Derivatives	Derivatives
d	d
$\frac{d}{dx}(\sin x)$	$\frac{a}{dx}(\cos x)$
ax	<i>ux</i>
	T
Derivatives	Derivatives
d	d
$\frac{d}{dx}(\tan x)$	$\frac{d}{dx}(\cot x)$
$dx^{(can x)}$	$dx^{(coex)}$
	+
Derivatives	Derivatives
d	d
$\frac{d}{dx}(\sec x)$	$\frac{d}{dx}(\csc x)$
dx	dx
+	+
•	_

f(x)g'(x) + g(x)f'(x)	$c \cdot f'(x)$
$g'(x) \cdot f'(g(x))$	$\frac{g(x) \cdot f'(x) - f(x)g'(x)}{\left(g(x)\right)^2}$
$-\sin x$	$\cos x$
$-\csc^2 x$	sec ² x
$-\csc x \cot x$	sec x tan x

Derivatives	Derivatives
$\frac{d}{dx}(\ln x)$	$\frac{d}{dx}(e^x)$
Derivatives	Derivatives
$\frac{d}{dx}(a^x)$	$\frac{d}{dx}(\sin^{-1}x)$
Derivatives	Derivatives V _{ery rare!}
$\frac{d}{dx}(\tan^{-1}x)$	$\frac{d}{dx}(\sec^{-1}x)$
Derivatives	Derivatives
Derivatives of inverse cofunctions (arccos x, arccot x, arccsc x)	Derivatives of inverse functions Let $g(x) = f^{-1}(x)$ What is $g'(x)$?
Derivatives	Derivatives
$\frac{d}{dx}(x)$	Implicit differentiation
+	

e^{x}	$\frac{1}{x}$
$\frac{1}{\sqrt{1-x^2}}$	$a^x \cdot \ln a$
$\frac{1}{ x \sqrt{x^2-1}}$	$\frac{1}{1+x^2}$
$g'(x) = \frac{1}{f'(g(x))}$ Slopes at inverse points are reciprocals.	Opposite of the derivative of the corresponding function
Differentiate both sides with respect to x . Treat y as a function of x and apply chain rule.	Find the slope using the graph. There is no shortcut rule for this function!

Other	Other
Average rate of change of f on $[a, b]$	How to find critical points
How to find the absolute maxima and minima of <i>f</i>	How to find inflection points
How to find vertical asymptotes	How to find horizontal asymptotes
How to solve related rates problems	Other
Integration $\int dx$	Integration $\int a dx$

A critical point is any interior point where $f'(x) = 0$ or $f'(x)$ is undefined.	Find the slope of the secant line. $\frac{f(b) - f(a)}{b - a}$
Inflection points will exist where f'' changes signs.	Candidate's test: Compare function outputs at endpoints and points where f' changes sign. The y-value is the max/min!
Use end behavior. Find $\lim_{x\to -\infty} f(x)$ and $\lim_{x\to \infty} f(x)$	Set the denominator equal to 0 and solve for <i>x</i> .
	Write an equation that models the situation. Implicitly differentiate all variables that are changing with respect to time.
ax + C	x + C

ln x + C	$\frac{x^{n+1}}{n+1} + C$
$-\cos x + C$	$\sin x + C$
$-\cot x + C$	$\tan x + C$
$-\csc x + C$	$\sec x + C$
$\frac{1}{\ln a} \cdot a^x + C$	$e^x + C$

$\tan^{-1}x + C$	$\sin^{-1} x + C$
Use geometry! This is a semicircle of radius r !	$\sec^{-1} x + C$
If $f(x)$ is continuous on $[a,b]$ and differentiable on (a,b) then $\frac{f(b)-f(a)}{b-a}=f'(c)$ For some value c in (a,b) . Slope of the secant line = slope of the tangent line. Average rate of change = instantaneous rate of change.	If $f(x)$ is continuous on $[a,b]$ then $f(x)$ takes on every value between $f(a)$ and $f(b)$.
v(t) and $a(t)$ have opposite signs	v(t) and $a(t)$ have the same sign
From $x =to x =the net change in is (units). 1. Interval 2. Context 3. Net change or accumulation 4. Units$	At x =, theis changing at a rate of (units). 1. Instant 2. Context 3. Rate of change 4. Units

Interpretations and Justifications	Interpretations and Justifications
f is increasing when	f is decreasing when
+	+
Interpretations and Justifications	Interpretations and Justifications
f is concave up when	f is concave down when
+	+
Interpretations and Justifications	Interpretations and Justifications
f has a relative max when	f has a relative min when
+	+
Interpretations and Justifications	Interpretations and Justifications
When a question asks you to "interpret the meaning"	When a question asks you to "justify"
Interpretations and Justifications	Interpretations and Justifications
+	+

f' < 0	f' > 0
$f^{\prime\prime} < 0$	f'' > 0
f'(x) = 0 or undefined and f' changes from - to + OR $f'(x) = 0$ and $f''(x) > 0$	f'(x) = 0 or undefined and f' changes from + to - OR f'(x) = 0 and $f''(x) < 0$
The response must include a definition or theorem. Be sure to verify the conditions of the theorem!	The response must include: 1.Meaning in context 2.Units 3.Time

Area by Riemann sums (rectangles)	Area / Volume Left Riemann sums are an overestimate if / underestimate if Right Riemann sums are an overestimate if / underestimate if
Area by trapezoids	Area using trapezoids will be an overestimate if underestimate if
Total area =	How to find the area between curves
Volume: Disks	Volume: Washers
Volume: Cross- sections	Area / Volume

Riemann Sum Left Right	Over estimate when f is decreasing increasing	Under estimate when f is increasing decreasing	$\sum_{k=1}^{n} f(x_k) \cdot \Delta x$ height width $\text{The y-value/height could be at the left, right, or midpoint of each interval.}$
f is concave up f is concave down			$A = \frac{1}{2} \Delta x (y_0 + y_1) + \frac{1}{2} \Delta x (y_1 + y_2) + \cdots$
$\int_{a}^{b} (\text{higher - lower}) dx = \int_{a}^{b} [f(x) - g(x)] dx$ OR $\int_{c}^{d} (\text{right - left}) dy = \int_{c}^{d} [f(y) - g(y)] dy$			$\int_{a}^{b} f(x) dx$
$\int_a^b \pi(R^2-r^2)dx$ OR $\int_c^d \pi(R^2-r^2)dy$ $R=$ larger measurement from axis of revolution			$\int_{a}^{b} \pi(\text{radius})^{2} dx$ OR $\int_{c}^{d} \pi(\text{radius})^{2} dy$
			$\int_{a}^{b} (\text{area of one cross section}) dx$ OR $\int_{C}^{d} (\text{area of one cross section}) dy$

$\int_{a}^{b} f'(x) dx$	Final amount / Final position $f(b) =$
Other	Other
Total distance traveled	Position Velocity Acceleration
Other	Other
Speed +	If $F(x) = \int_a^{v(x)} f(t)dt$ then $F'(x) =$
Other	Other
Average value of a function f on $[a, b]$	Solving a differential equation
Other	Other
Solve $\frac{dy}{dx} = ky$	Displacement
•	+

$f(a) + \int_{a}^{b} f'(x) dx$ Starting amount + accumulation	$f(x)\big]_a^b = f(b) - f(a)$ This gives the net change in the amount or position.
f(t), x(t), or y(t) f'(t), x'(t), or y'(t) f''(t), x''(t), or y''(t)	$\int_{a}^{b} v(t) dt$
$f(v(x)) \cdot v'(x)$ Plug in the upper limit of integration. Multiply by the derivative of the upper limit.	v(t)
Separate Integrate Solve for C Isolate y Select the proper solution	$\frac{1}{b-a} \int_{a}^{b} f(x) dx$
$\int_{t_1}^{t_2} v(t) dt$	Exponential growth! $y = y_0 e^{kt}$