## **Graphing Quadratic Functions**

In Lesson 3.3 we learned how to translate a function. What other types of functions could we translate? Go to Desmos.com and click the start graphing button.

1. Graph  $f(x) = x^2$  and fill in the table and graph below.

| X | У |
|---|---|
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |

- 2. Where is the lowest point of the graph located?
- 3. For what value of *x* does...

f(x) = 16? f(x) = 9? f(x) = 25? f(x) = 0?

What do you notice?

**4.** Use your knowledge from previous lessons to graph each of the following functions **without Desmos.** When you are done, check your graphs in Desmos and describe how the graph has transformed from the parent function,  $f(x) = x^2$ ?





Important ideas:

## **Check Your Understanding**

**1.** Describe the translations of the graph of  $y = x^2$  needed to produce the graph of each equation.

**a.**  $y = x^2 - 6$ **b.**  $y = (x + 5)^2$ **c.**  $y = (x - 3)^2 - 9$ 

2. Find the vertex of each parabola.

**a.**  $y = x^2 + 3$  **b.**  $y = (x - 2)^2$  **c.**  $y = -8 + (x + 5)^2$ 

- **3.** Each parabola described is the graph of  $y = x^2$ . Write an equation for each parabola and sketch its graph.
  - a. The parabola is translated horizontally -3 units.
- **4.** Describe what happens to the graph of  $y = x^2$  in the following situations.
  - **a.** y is replaced with (y + 1). **b.** x is replaced with (x - 5).
- 5. Solve.

**a.**  $x^2 + 6 = 31$  **b.**  $x^2 - 12 = 52$  **c.**  $(x - 3)^2 = 100$ 

