

Who's Who on Halloween?

Amari, Francisca, Jamirea, Micaiah, and Senad live in the same neighborhood. On Halloween, they each go out trick-or-treating, but they each start at slightly different times, wear a different costume, and have different favorite candies they like to collect. For each derivative problem you solve, you'll receive a clue from one of the neighbors about what they saw that night. Can you figure out who's who on Halloween, including what time each person started trick-or-treating, what their favorite candy is, and what costume they were in?

costaine they were in:																
		First Names				Favorite Candy				Costume						
		Amari	Francisca	Jamirea	Micaiah	Senad	M&Ms	Starbursts	Twix	Air Heads	Mounds	Chef	Banana	Ghost	Lumberjack	Pirate
Time	5:45	X		X	X	X	X	X	X		X		X	X	X	X
	6:00	X	X	X	X		X	X		X	X	X	X	X		X
	6:30	\times	X	X		X	X		X	X	X	X		X	X	X
	6:45		\times	X	X	X		X	X	X	X	X	X	X	X	
	7:00	X	X		X	X	X	X	X	X		X	X		X	X
	Chef	X		X	X	X	X	X	X		X					
ne	Banana	X	X	X	_	X	X		X	X	X					
Costume	Ghost	X	X		X	X	\times	X	X	X						
ပ	Lumberjack	X	X	×	X		X	X		X	X					
	Pirate		X	X	\times	X		ıΧ	X	\times	X					
Favorite Candy	M&Ms		X	X	X	X										
	Starbursts	X	X	X		X										
	Twix	\times	X	X	X											
	Air Heads	\times		X	X	X										
ш.	Mounds	X	X	الد د الا	X	X										

- The person whose favorite candy is Air Heads started trick-or-treating before Senad.
- 2. The 5 people are the person whose favorite candy is Air Heads, the pirate, Micaiah, the person who started trick-or-treating at 7 PM and the person whose favorite candy is Twix.
- 3. Of the chef and Senad, one started trick-or-treating at 5:45 PM and the other has Twix as their favorite candy.
- 4. Francisca started trick-or-treating at 5:45 PM.
- 5. Jamirea is either the ghost or the lumberjack.
- 6. The ghost started trick-or-treating after the banana.
- 7. The person whose favorite candy is M&Ms is neither the ghost nor the banana.
- 8. The person who started trick-or-treating at 6:30 has Starbursts as their favorite candy.
- 9. The person who started trick-or-treating at 6:45 was not the banana.
- 10. The banana started trick-or-treating after Senad.

1. The graph of y = f(x) is shown.

Evaluate
$$\lim_{h\to 0} \frac{f(3+h)-f(3)}{h}$$

This means find f'(3)

2. Find the derivative of each function.

$$f(x) = \ln(4x) \qquad f'(x) = \frac{4}{4x} = \frac{1}{x}$$

$$g(x) = (3x - 5)^2 \quad g'(x) = 3 \cdot 2 \quad (3x - 5) = 6(3x - 5) = 18x - 30$$

$$h(x) = \sec x \qquad h'(x) = \sec x \quad \tan x$$

3. The graph of y = f(x) is shown below for $-4 \le x \le 9$. For which value(s) of x is f continuous but not differentiable?

$$X=2$$
 and $X=7$

4. Selected values of f, g, and their derivatives are given in the table.

x	f(x)	g(x)	f'(x)	g'(x)
-3	10	1	-1	3
-1	4	-2	-3	0
2	1	-5	0	-2
5	-2	-3	2	8
8	-5	11	7	-3.5
11	5	8	13	1

Let
$$h(x) = f(x) \cdot g(x)$$
. Find $h'(8)$.

$$h'(8) = f(x) \cdot g(x) \cdot F(x)$$

$$h'(8) = F(8) \cdot g'(8) + g(8) \cdot F'(x)$$

$$= -5 \cdot (-3.5) + 11(7)$$

$$= 94.5$$

5. Let $j(x) = 5x^3 - kx^2 + 10x + m$ for some constants k and m. If j(2) = -10 and j'(2) = -106, find the values of k and m.

$$j'(x) = 15x^{2} - 2kx + 10$$

$$j'(2) = 15(2)^{2} - 2k(2) + 10 = 70 - 4k = 6 \Rightarrow k = 16$$

$$j(2) = 5(2)^{3} - 16(2)^{2} + 10(2) + m = -10$$

$$= 40 - 64 + 20 + m = -10 \quad m = -6$$

6. The graph of y = f(x) is shown below. Order the following from least=1 to greatest=4.

$$\lim_{x \to -1} \frac{f(x) - f(-1)}{x + 1} = -1$$

The average rate of change of f on the interval [3,6]

$$\frac{2}{\frac{f(4)-f(-1)}{5}} \text{ heg but less steep}$$

$$\frac{3}{f'(-3)} = 0$$

$$\frac{3}{f'(-3)} = 0$$

7. Selected values of f, g, and their derivatives are given in the table.

x	f(x)	g(x)	f'(x)	g'(x)
-3	10	1	-1	3
-1	4	-2	-3	0
2	1	-5	0	-2
5	-2	-3	2	8
8	-5	11	7	-3.5
11	5	8	13	1

Let
$$k(x) = \frac{g(x)}{f(x)}$$
. Find $k'(-1)$.

$$k'(-1) = \frac{f(-1) \cdot g'(-1) - f'(-1) \cdot g(-1)}{(f(-1))^{2}} = \frac{4(0) - (-3)(-2)}{4^{2}} = \frac{-b}{1b} = \frac{-3}{8}$$

8. If
$$f(x) = \frac{\cos^2 x}{\sin x}$$
, find $f'(x)$.
$$F(x) = \frac{1 - \sin^2 x}{\sin x} = \cos x - \sin x$$

$$F'(x) = -\cos x \cos x$$

9. Selected values of f, g, and their derivatives are given in the table.

x	f(x)	g(x)	f'(x)	g'(x)
-3	10	1	-1	3
-1	4	-2	-3	0
2	1	-5	0	-2
5	-2	-3	2	8
8	-5	11	7	-3.5
11	5	8	13	1

Let j(x) = f(g(x)). Find j'(5).

$$j'(5) = g'(5) \cdot f'(g(5)) = 8 \cdot f'(-3) = 8 \cdot (-1) = -8$$

10. Let $f(x) = x^2 + 5x$ and let g be a function so that g'(x) = 3 for all x. If h(x) = f(g(x)) and h'(x) = 18x + 57, write an equation for g(x).

$$g(x)$$
 is linear with a slope of 3. $g(x) = 3x + b$
 $f'(x) = ax + 5$
 $h'(x) = g'(x) \cdot f'(g(x)) = 3 \cdot [2(3x+b) + 5] = 18x + 57$
 $= 18x + bb + 15 = 18x + 57$
 $= 18x + 57$
 $= 18x + 57$