| <u> </u> | - · · | |----------|------------------| | Circuit | Training | | Circuit | Training | Name: _____ AP Precalculus Review Circuit - No Calculator! **Directions:** Begin in cell #1. Show the work necessary to arrive at your answer. You may require a separate sheet of paper. Search for your answer in one of the other cells and mark that cell #2, then work out the new problem. Proceed in this manner until you complete the circuit. #___1__ Answer: -1 Select values of two functions are given in the table. The functions are either linear, quadratic, or exponential. Determine the y-intercept of each function and then search for their product. | х | f(x) | g(x) | |---|------|------| | 1 | 6 | 6 | | 2 | 24 | 12 | | 3 | 96 | 20 | | 4 | 384 | 30 | # ____ Answer: $\frac{11}{2}$ Consider the functions $f(x) = \log_2(4x + 5) - \log_2 x$, and $g(x) = \log_2 x$. In the xy – coordinate plane, what are all x-coordinate(s) of the intersection(s) of the graphs of f and g? If there is more than one intersection, search for the product of the x-coordinates. If there is only one, search for the x-coordinate of the intersection. #_____ Answer: 38 The function $y = \frac{x^2 + 5x + 4}{3x^2 - 3}$ has a vertical asymptote at $x = \underline{\hspace{1cm}}$, a horizontal asymptote at $y = \underline{\hspace{1cm}}$, a hole at $x = \underline{\hspace{1cm}}$, an x-intercept of $x = \underline{\hspace{1cm}}$ and a y-intercept of $y = \underline{\hspace{1cm}}$. To advance in the circuit, find the product of the five answers. #_____ Answer: -3 Consider the rational function, $q(x) = \frac{(x^2 + 2x + 1)}{(1 - x)}$. Find the interval (a, b) on which $q(x) \ge 0$. To advance in the circuit, search for a. #_____ Answer: 3 A polynomial function, p, has one real zero and two non-real zeros. The real zero is -2 and one of the non-real zeros is -3 + 5i. What is the other non-real zero in a + bi form? To advance in the circuit, find the sum of a and b for the non-real zero you found. # _____ Answer: $2\sqrt{3}$ Solve the equation $\sin 2\theta = \cos \theta$ for $0 \le \theta < 2\pi$. There are multiple answers. Check your answers with your teacher and then advance to the answer choice -1. A polynomial function p is given by $p(x) = (x^2 - x - 2)(x^2 - 9x)$. List the zeros of the function. To advance in the circuit, find the sum of the zeros. Answer: ∞ Answer: 1 Answer: −∞ The complex number represented by The piecewise function, f, consisting of three line $4\cos\left(-\frac{\pi}{6}\right) + i\left(4\sin\left(-\frac{\pi}{6}\right)\right)$ segments is shown. has the polar coordinates (r, θ) and the rectangular coordinates (a, b). Find both representations of the complex number and then to advance in the circuit, (0, 3)find the a-coordinate. (3, 1)The function, g, not pictured, is the inverse of f. What is the minimum value of g? Answer: 10 Answer: −8 $\lim_{x \to -\infty} (-0.5x^7 + 6x^5 - 12x^4 + x) =$ Consider the function $f(x) = e^x$. As x decreases without bound, f(x) tends towards _____. Answer: $-\frac{16}{9}$ Answer: 5 Let $g(x) = 6\sin^2 x + \ln\sqrt{x} + 6\cos^2 x + \tan\left(\frac{3\pi}{4e}x\right)$. What is the period of $h(t) = 4 \sin(\frac{\pi}{3}t) + 5$? What is g(e)? Answer: -2Answer: 0 The expression $6 \log \sqrt[3]{x} + 5 \log \frac{1}{x}$ can be written as The function $g(x) = 6 \cdot 7^{2x} + 5 \cdot 49^x$ can be written $\log x^a y^b$. What are the values of a and b? in the form $g(x) = a \cdot b^x$. The value of a is _____ and the value of b is _____. To advance in the circuit, find the sum of a and b. To advance in the circuit, find b - a. Answer: 6 What is the minimum value of $h(t) = 4 \sin(\frac{\pi}{3}t) + 5$?