Stats Medic Important Ideas for CED Unit 1: Exploring One-Variable Data

Analyzing Categorical Data (Activity: How Are Your Favorite Classes Related?)

- Identify the individuals and variables in a set of data.
- Classify variables as categorical or quantitative.
- Make and interpret bar graphs for categorical data.
- Identify what makes some graphs of categorical data misleading.
- Calculate marginal and joint relative frequencies from a two-way table.
- Calculate conditional relative frequencies from a two-way table.
- Use bar graphs to compare distributions of categorical data.
- Describe the nature of the association between two categorical variables.

LT#H Important Ideas: Iwo wan table 17#3 misleading Graphs: -watch out for vertical axis. variable l 17#2 Total Jariable 2 В Categorical data: Report frequencies (counts) relative frequencies shank start at O Tota marginal rel. freq: B/c hand rel. freq: B/c bar graphs, pie Joint rel. freq. · Be careful of Conditional (el frag; #/B Stal-by-Side bar pictograph charts, * Association 6/w 2 variables oraphs means knowing one affects the

Mosaic Plot (Activity: What Will Be the Mascot?)

- Make and interpret bar graphs and mosaic plots for categorical data.
- Use bar graphs and mosaic plots to compare distributions of categorical data.
- Describe the nature of the association between two categorical variables.

LT#3 Association Important Ideas: [IT#1 . LT#2] Displays for categorical data If knowing the value of one variable helps us to predict the value of Baz GRAPH: Each bar represents frequency or relative frequency for each category. SEGMENTED. Stack up the bars to make 100%. the other variable CAP 60APH MOSAIL PLOT: Segmented bar graph where width of --- segmented bor graphs are different. bars is proportional to group size.

STATS MEDIC

Displaying Quantitative Data (Activity: How Many Pairs of Shoes Do You Own?)

- Make and interpret dotplots, stemplots, and histograms of quantitative data.
- Identify the shape of a distribution from a graph.
- Describe the overall pattern (shape, center, and variability) of a distribution and identify any major departures from the pattern (outliers).

Describing Distributions Important Ideas: LT#2 Shape *Use -ly words Shape skewed left Outliers Center: sym-mean skewed/outlier>med. skewed right Variability: now spiced out the data is. symmetric Context +

Describing Quantitative Data (Activity: How Many Colleges Are You Applying To?)

- Calculate measures of center (mean, median) for a distribution of quantitative data.
- Calculate and interpret measures of variability (range, standard deviation) for a distribution of quantitative data.
- Explain how outliers and skewness affect measures of center and variability.

Important Ideas: [T#2] Measures of variability LT#3 [[T#1] Measures of center -Mean & SD are greatly Range = max-min affected by outlie cs (nonresistant Mean: average $\tilde{X} = \frac{Z}{N}$ $SD = [Z(x_i - \bar{x})^L]$ Median: middle value or the + outliers or skowed dist. "The context typically varies by SD from the mean of <u>x</u>." average of middle ouse median of IQR two values symmetric vice mean 4 SD

Describing Quantitative Data (Activity: Where Do I Stand?)

- Identify outliers using the 1.5×IQR rule.
- Make and interpret boxplots of quantitative data.
- Use boxplots and numerical summaries to compare distributions of quantitative data.

Percentiles and Cumulative Relative Frequency Graphs (Activity: Where Do I Stand?)

- Find and interpret the percentile of an individual value within a distribution of data.
- Estimate percentiles and individual values using a cumulative relative frequency graph.

Cumulative Relative Frequency Graph LT#2 Important Ideas: [IT#1] Percentile: The percent Percentile 1 of values less than or equal to a given value. Q1=25 1, ile Jaft H Med = 50th , ile Q3=75th vile * "at", not "in" Data Values

z-scores and Transforming Data (Activity: How Did I Do?)

- Find and interpret the standardized score (z-score) of an individual value in a distribution of data.
- Describe the effect of adding, subtracting, multiplying by, or dividing by a constant on the shape, center, and variability of a distribution of data.

LT#1 Given any distribution, Important Ideas: Standardized values · Add/Subtract each value by a z-scores) constant a jalue-mean -> shape & variability stay same > Center onits up Tolawin b Z standard multiply swide each value by a above / belon -> center & Krariability Shape stars

Density Curves, 68-95-99.7 Rule (Activity: Exploring Density Curves)

- Use a density curve to model distributions of quantitative data.
- Identify the relative locations of the mean and median of a distribution from a density curve.
- Use the 68-95-99.7 Rule to estimate the proportion of values in a specified interval.

Normal Distribution Calculations (Activity: Will Marty Make it Back to the Future?)

- Find the proportion of values in a specified interval in a Normal distribution using Table A or technology.
- Find the value that corresponds to a given percentile in a Normal distribution using Table A or technology.

Assessing Normality (Activity: Do We Have Normal Test Scores?)

• Determine whether a distribution of data is approximately Normal from graphical and numerical evidence.

Stats Medic Important Ideas for CED Unit 2: Exploring Two-Variable Data

Scatterplots (Activity: How Many Rubber Bands Does Barbie Need?)

- Distinguish between explanatory and response variables for quantitative data.
- Make a scatterplot to display the relationship between two quantitative variables.
- Describe the direction, form, and strength of a relationship displayed in a scatterplot and identify unusual features.

LT#293 Describing a relationship. Important Ideas: [1#] Direction-+/-/None Unusual Features Form (Linear/Non linear) Explanatory vouriable: Used to predict Bellonse response variable Surtance responds strength Explanator

Correlation (Activity: How Safe is Barbie?)

- Interpret the correlation.
- Understand the basic properties of correlation, including how the correlation is influenced by unusual points.
- Distinguish correlation from causation.

Important Ideas: [LT#1] Interpret r Direction: (+/-) Form: Always linear! Strength: -1 -0.5 0 0.5 +1 i weak 1 strong	[T#2] Properties of r Unusual value in pattern → strengthens r (closer to 1 or 1) Unusual value not in pattern → weakens r (closer to 0) • r does not have units • changing units for X, y does not change, r.	[[T#3] Correlation does <u>Not</u> equal causation.
regative moderate maderate positive		
use "-ly" words		

Regression Line, Predictions & Residuals (Activity: How Good are the Predictions for Barbie?)

- Make predictions using regression lines, keeping in mind the dangers of extrapolation.
- Calculate and interpret a residual.
- Interpret the slope and y intercept of a least-squares regression line.

IT#2 Residuals Important Ideas; nt 9 Slope 17#1 Predictions $\begin{array}{l} \text{Pesidual} = \text{Actual} - \text{Predict}, \\ \text{R} = \text{A} - \text{P} \end{array}$ $\hat{y} = a + bx$ the predicted y-conte "The actual context was Residual above/below tope: "With each additional x-context the predicted the predicted valu *Be carcful of increases decreases bi exhapolatia sppe

Least Squares Regression & Residual Plots (Activity: How Many iPhones Will be Sold?)

- Determine the equation of a least-squares regression line using technology or computer output.
- Construct and interpret residual plots to assess whether a regression model is appropriate.

Important Ideas: [IT#2] Residual Plots [T#1] Equation LSRL Good : Applet: Two QUANTITATIVE VARIABLES Calculator: - put values into lists - STAT/CALC/LinReg(a+bx)

Standard Deviation of Residuals & r-squared (Activity: Can You Guess My IQ?)

• Interpret the standard deviation of the residuals and r-sq and use these values to assess how well a least-squares regression line models the relationship between two variables.

17#1 Coefficient of Determination Important Ideas: Standard Deviation the residuals (s) Interpretation: "About <u>r</u>2% of the variability in <u>y-context</u> is Interpretation: "The actual accounted for by st is typically about <u>s</u> way from number predicted the LSP

Outliers for Scatterplots (Activity: How do Outliers Affect the LSRL?)

- Describe how the least-squares regression line, standard deviation of the residuals, and r2 are influenced by outliers.
- Find the slope and y-intercept of the LSRL from the means and standard deviations of x and y and their correlation.

[LT #1] Outlies and the LSRL Important Ideas: Outliers: out of pattern Horizontal outliers - tilt the line (large residuals) Vertical outliers - shift line up or down A good LSRL has low S + high r² (close to 1) High Tigh: very large or very small leverage: x-values. [IT#2] Formulas for LSRL (ŷ=a+bx) Influential: if removed, big changes $b = r \frac{s_y}{s_x}$ $\overline{y} = a + b\overline{x} \rightarrow a = \overline{y} - b\overline{x}$ to slope, y-intercept, r

Transforming Non-linear Data (Activity: How Many iPhones Will be Sold?)

• Use transformations involving powers, roots, or logarithms to create a linear model that describes the relationship between two quantitative variables and use the model to make predictions.

Important Ideas:		Predictions
Function	Plot	-Plug in X 9 solve for y.
Unear	x vs. y 100 x vs. 109.y	* may need to undo a root or log norder to get y *
Exponential	x vs. log y	$EX: \int \log y = (a + bx)$

Choosing the Best Regression (Activity: How Close to the Finish Line Can You Get?)

• Determine which of several models does a better job of describing the relationship between two quantitative variables.

Stats Medic Important Ideas for CED Unit 3: Collecting Data

Sampling Methods (Activity: Does Beyonce Write Her Own Lyrics?)

- Identify the population and sample in a statistical study.
- Identify voluntary response sampling and convenience sampling and explain how these sampling methods can lead to bias.
- Describe how to select a simple random sample using slips of paper, technology, or a table of random digits.

More Sampling Methods Day 1 (Activity: How Much Do Fans Love Justin Timberlake?)

• Describe how to select a sample using stratified random sampling, cluster sampling, and systematic random sampling, and explain whether a particular sampling method is appropriate in a given situation.

Important Ideas: PRINDIM SC Random Sample pulation (170 nooses agro TD

More Sampling Methods Day 2 (Activity: How Much Do Fans Love Justin Timberlake? Day 2)

• Describe how to select a sample using stratified random sampling, cluster sampling, and systematic random sampling, and explain whether a particular sampling method is appropriate in a given situation.

POPULATION		
Important Ideas: STRATIFIED RANDOM SAMPLE	CLUSTER SAMPLE	SYSTEMATIC RANDOM SAMPLE
SRS SRS SRS		 Choose a random Starting point. Use equal intervals.
sample some from all groups	sample all from some graps	

Problems with Sample Surveys (Activity: What is Wrong with These Surveys?)

• Explain how undercoverage, nonresponse, question wording, and other aspects of a sample survey can lead to bias.

Important Ideas: LT#I Undurcoveranc: when some members of a population cannot or are less to be included in a sample. Ex: Calling Landines. Non respending to a sample to respective annot * This is Volume	nse: When an al is part of but chooses not ma or they be reached. different from any Response.	Response Bias: Pattern of Inaccurate results. Ex: Wording of question, intorviewer, lying, etc.
--	--	--

Observational Studies vs. Experiments (Activity: Does SAT Prep Produce Higher Scores?)

- Explain the concept of confounding and how it limits the ability to make cause-and-effect conclusions.
- Distinguish between an observational study and an experiment, and identify the explanatory and response variables in each type of study.
- Identify the experimental units and treatments in an experiment.

Important Ideas: A-explanatory variable: helps explain/predict response. LT#1 B- response variable: outcome being measured C- confounding variable: influences both the explanator a response variables Observational study: no treatment LT#2 Experiment: treatments imposed, allow us to show causation Experimental units: what/who treatment is imposed on. Treatments: what is done (or not done) to experimental units

Designing Experiments (Activity: Would You Fall For That?)

- Describe the placebo effect and the purpose of blinding in an experiment.
- Describe how to randomly assign treatments in an experiment using slips of paper, technology, or a table of random digits.
- Explain the purpose of comparison, random assignment, control, and replication in an experiment.

IT#2 Conducting Bandom Assignment Important Ideas: LI#1. Control granp: used to Olabel @ Randomize 3 Assign. WWide baseline data for companison. 17#3 4 Key principles of Experiments · B)(nd (ng: When sup)ects (single blind) DComparison = 2 or more treatments and/or experimenter (double-blind) @ zandam Assignment who interact are unawate of 3 Control: reep all other variables what treatment is given. besides treatments constant. · Placebo Effect: When a D Replication : Using enough exp. Units face treatment (placebo) distinguish differences \mathcal{M}

Randomized Block Design (Activity: Does the Type of SAT Prep Matter?)

- Describe a completely randomized design for an experiment.
- Describe a randomized block design and a matched pairs design for an experiment and explain the purpose of blocking in an experiment.

Matched Pairs Design block of size 2 Important Ideas: Block-group of experimental units -subjects are paired and then that are similar randomly assigned to a treatment Randomized Block Design -each subject receives two Seperate subjects into blocks and treatments then randomly assign treatments *order of the treatments within each block. must be randomized

Inference for Sampling & Experiments (Activity: What's in a Name?)

- Explain the concept of sampling variability when making an inference about a population and how sample size affects sampling variability.
- Explain the meaning of statistically significant in the context of an experiment and use simulation to determine if the results of an experiment are statistically significant.

ITHIZ Statistical Significance: when Important Ideas: UT#1 Sampling Variability, results are too which al to have occurred purely by chance. · Laroxur sampte sizes décrease the variability of estimates. Simulation: 1 arour sample sizes make ster to determine GIGNITICANU

Score of Inference (Activity: Does SAT Prep Improve Scores? Part 2)

- Understand why a result can be extended to the population from which the sample was randomly selected.
- Given a description of a study with or without random assignment, determine whether there is evidence for a causal relationship.

Important Ideas: Random sample allows us to generalize our T#1 POPULATION conclusions to the population from which we sampled. Random assignment allows us to LT# Z Say a treatment causes changes Random 30 students Assignment response variable

STATS MEDIC

Stats Medic Important Ideas for CED Unit 4: Probability, Random Variables and Probability Distributions

Randomness & Probability (Activity: How Good is Mrs. Gallas at Free Throws?)

• Interpret probability as a long-run relative frequency.

Important ideas: 17#1 Probability Lang nun relative frequency • It is always between 091. • Shart term > unpredictable ·Long term -> predictable

Law of Large Numbers. If we do something many many times th desired autrames proportion of will approach its probability.

Simulation (Activity: Are Soda Contests True?)

• Use simulation to model a random process in order to estimate a probability.

Important ideas: <u>Simulation</u> : initation of chance behavior based on a model that accurately reflects the situation. Examples: dice, flip coin, applet,	Simulation process Describe how you will simulate one trial (one repetition) Perform many trials (repetitions)
random number generator	(3) Use the results to answer the avestion.

Probability Rules (Activity: The Last Banana)

- Give a probability model for a random process with equally likely outcomes and use it to find the probability of an event.
- Use basic probability rules, including the complement rule and the addition rule for mutually exclusive events.

Important ideas: · Complement: Probability of an Yrobability Model= event NOT happening. List shaving all possible automes and their probabilities. xclusive: Events ur together. tim Rule: "OR" - Must add to 1 · mutually E Each probability is between 091. cannot oc

General Addition Rule (Activity: Can You Taco Tongue and Evil Eyebrow?)

- Use a two-way table or a Venn Diagram to model a random process and calculate probabilities involving two events.
- Apply the general addition rule to calculate probabilities.

Independent & Dependent Events (Activity: Can You Taco Tongue and Evil Eyebrow? Day 2)

- Use a two-way table or Venn diagram to model a random process and calculate probabilities involving two events.
- Calculate and interpret conditional probabilities.
- Determine whether two events are independent.

LT#3 Independent: when knowing me event has occurred or has not Important Ideas: 17 #2 Conditional occurred does not affect the Probability probability of the second event. P(A and B) ١f $P(A) = P(A|B) = P(A|B^{c})$ then A and B are independent.

Conditional Probability & Tree Diagrams (Activity: Can You Geta Pair of Aces or a Pair of Kings?)

- Use the general multiplication rule to calculate probabilities.
- Use a tree diagram to model a chance process involving a sequence of outcomes and to calculate probabilities.
- When appropriate, use the multiplication rule for independent events to calculate probabilities.

Discrete Random Variables (Activity: How Many Children Are in Your Family?)

- Use the probability distribution of a discrete random variable to calculate the probability of an event.
- Make a histogram to display the probability distribution of a discrete random variable and describe its shape.
- Calculate and interpret the mean (expected value) of a discrete random variable.

Continuous Random Variables (Activity: How Much Do You Get Paid?)

- Calculate and interpret the standard deviation of a discrete random variable.
- Use the probability distribution of a continuous random variable (uniform or Normal) to calculate the probability of an event.

Probability for continuous Important ideas: ITH2 Standard Deviation roundom variables a discrete prob. dist. of -find area under the curve. $\leq (x_i - M)^2 p_i$ Normal: 1 Liborn N(N,O $0^2 = Varian(e)$ Table A a 0 STATS MEDIC

Transforming Random Variables (Activity: Time for a Raise)

• Describe the effect of adding or subtracting a constant or multiplying or dividing by a constant on the probability distribution of a random variable.

Important ideas:	
Adding/subtracting a constant c	Multiplying/dividing by constant c
Shape: Stays the same center: add/subtract c variability: stays the same	shape: stays the same center: multiply/divide by C variability: multiply/divide by c

Combining Random Variables (Activity: What Will You Make Next Year?)

- Calculate the mean and standard deviation of the sum or difference of random variables
- Find probabilities involving the sum or difference of independent Normal random variables.

LT#2 Normal Probability Distributions Important ideas: LT#1 Adding & Subtracting Random Variables X * Y Find new mean & SD then $M_{x+y} = M_x + M_y$ $M_{x-y} = M_x - M_y$ find z-score. Z = X - M $\mathcal{O}_{X^{*}y} = \overline{\mathcal{O}_{X}^{2} + \mathcal{O}_{y}^{2}} \qquad \mathcal{O}_{X^{*}y} = \sqrt{\mathcal{O}_{X}^{2} + \mathcal{O}_{y}^{2}}$

Binomial Distributions (Activity: Is it Smart to Foul at the End of the Game?)

- Determine whether the conditions for a binomial setting are met.
- Calculate and interpret probabilities involving binomial distributions

Important ideas: [LT#2] Binomial formula LT#1) Conditions for binomial setting Binary: each trial is a success or failure P(X= Independent: each trial is independent Number of trials: is fixed (n =)Same probability of success for each trial (p=) robability failure of successes

Binomial Distributions (Activity: Pop Quiz!)

- Determine whether the conditions for a binomial setting are met.
- Calculate the mean and standard deviation of a binomial random variable. Interpret these values.

Binomial Distributions Important ideas: 17#2 LT#1 Describing mean: $M_x = \Pi - \rho$ "After many many trials the average # of successes context is M_x out of Π Binanial Dist. BINS Shape: Make Histogram Center: Mean "The number $O_{x} = (np(1-p))$ SD: of successes typical vanes Variability: Standard deviation

Binomial Distributions (Activity: Where Are All the Green Skittles?)

- Check the 10% condition to be able to assume independence of observations.
- Check the Large Counts condition to us the Normal approximation to the binomial distribution.

Geometric Distributions (Activity: How Many Bottle Flips to go Viral?)

- Calculate and interpret probabilities involving geometric random variables.
- Calculate the mean and standard deviation of a geometric distribution. Interpret these values.

of failutes Important ideas: Geometric Setting. B: Binary I: Independent T: Trials until success P(X=X)=(1P(SUCCESS) Describing Geometric Distribution center: M S: same probability Variability: Ox

Stats Medic Important Ideas for CED Unit 5: Sampling Distributions

Sampling Distributions (Activity: What was the Average for the Chapter 6 Test?)

- Distinguish between a parameter and a statistic.
- Create a sampling distribution using all possible samples from a small population.
- Determine if a statistic is an unbiased estimator of a population parameter.

LT#2 Sampling Distribution: Important ideas: shows the statistic found A statistic is an ば粕 in all possible samples unlaised estimator rameter: # describing If the mean of of size n sampling dist. is esor (10) statistic: # C equal to parameter. a sample mean | Prop. SD * when increasing samp dist vanability S stat. decreases.

Sampling Distributions (Activity: What was the Average for the Chapter 6 Test?)

• Use the sampling distribution of a statistic to evaluate a claim about a parameter.

Important ideas: Claim is tru % of dots [IT#1] Evaluating a Claim DAssume the claim is true. observed result @Create simulated sampling distribution. IF < 5% - convincing evidence against claim. ③Find % chance of getting observed result. If \geq 5% - not convincing evidence against claim.

Sample Proportions (Activity: What is the Proportion of Orange Reese's?)

- Calculate the mean and standard deviation of the sampling distribution of a sample proportion and interpret the standard deviation.
- Determine if the sampling distribution of a sample proportion is approximately Normal.
- If appropriate, use a Normal distribution to calculate probabilities involving a sample proportion.

LT#2 Approx Normal Important ideas: If Large Counts is met: n.p≥10 n(1-p)≥10 LT#1 mean aSD if the sampling diff of p is approx. harmal * If the 10% condition ism

Difference Between Two Sample Proportions (Activity: Do Skittles or M&Ms Have More Orange?)

- Calculate the mean and standard deviation of the sampling distribution of a difference between sample proportions.
- If appropriate, use a Normal distribution to calculate probabilities involving a difference between two proportions.

$$\begin{array}{c} \text{Important ideas:} \\ \hline \textbf{LT \# I} \text{ Sampling Distribution of } \hat{p}_{1} - \hat{p}_{2} \\ \text{SHAPE: Approximately Normal if} \\ n_{1}p_{1} \ge 10 \\ n_{2}(1-b_{1}) \ge 10 \\ n_{2}(1-b_{2}) \ge 10 \\ \hline \textbf{CENTER: } \mathcal{M}_{\hat{p}_{1}} - \hat{p}_{2} = p_{1} - p_{2} \\ \hline \textbf{VAPLABILITY}: \\ \mathcal{O}_{\hat{p}_{1}} - \hat{p}_{2} = \sqrt{\frac{p_{1}(1-p_{1})}{n_{1}} + \frac{p_{2}(1-p_{2})}{n_{2}}} \\ \end{array}$$

Sample Means (Activity: How Tall to be in the NBA? Part 1)

- Calculate the mean and standard deviation of the sampling distribution of a sample mean and interpret the standard deviation.
- If appropriate, use a Normal distribution to calculate probabilities involving sample means.

17#2 Important ideas: Shape: If the population is approx. Normal, the sampling distribution of X is also approx normal. LT#1 Sampling distribution Center: $M_{\bar{x}} = M$ Variability: $O_{\bar{x}} = \frac{O}{\sqrt{n}}$ Samp. dist. of \overline{X} N($\mathcal{M}_{\overline{X}}, \overline{\mathbb{H}}$) $Z = \frac{\overline{X} - \mathcal{M}}{\overline{\mathcal{O}}_{\overline{\mathcal{H}}}}$

Central Limit Theorem (Activity: How Tall to be in the NBA? Part 2)

- Explain how the shape of the sampling distribution of a sample mean is affected by the shape of the population distribution and the sample size.
- If appropriate, use a Normal distribution to calculate probabilities involving sample means.

Important ideas: [LT#2] Normal Distribution Calculations [IT #1] Central Limit Theorem (CLT) Sampling Distribution of X The sampling distribution of x is $N(M, \frac{\pi}{2}) \quad Z = \frac{\chi - N}{\sqrt{\pi}}$ approximately Normal when the sample size is large $(n \ge 30)$. ⇒Toble A M v

Difference Between Two Sample Means (Activity: ACT Scores - Which School is Better?)

- Calculate the mean and standard deviation of the sampling distribution of a difference between sample means.
- If appropriate, use a Normal distribution to calculate probabilities involving a difference between two means.

LT#2 Normal Important ideas: Calculation LT# I Sampling Distribution of X, -X, NM X-X2 Ox-X Shape: Check both sampling Jistributions D Population is approx. Normal OR (2) n > 30, Central Limit Theorem OR (2) n>30 (x,-x2 Ζ= $M_{-}M_{2}$ Center: M= lariability = 05

Stats Medic Important Ideas for CED Unit 6: Inference for Categorical Data: Proportions

What is a Confidence Interval? (Activity: Guess the Mystery Proportion)

- Identify an appropriate point estimator and calculate the value of a point estimate.
- Interpret a confidence interval in context.
- Determine the point estimate and margin of error from a confidence interval.
- Use a confidence interval to make a decision about the value of a parameter.

1,T#4 Decisions: 17#2#3 Important ideas: LT#1 Point Estimate: For interval (A,B) Confidence manadas Point = A+B margin = B-A Contain a plausible A statistic that provides à reasonable estimate about the values. "We are ____! Confident population parameter. Pt-Est -> Parameter that interval from A to B Captures the the parameter contex

What is a Confidence Level? (Activity: What Does "95% Confidence" Mean?)

- Interpret a confidence level in context.
- Describe how the sample size and confidence level affect the margin of error.
- Explain how practical issues like nonresponse, undercoverage, and response bias can affect the interpretation of a confidence interval.

Important ideas: LT#2 Margin of error LT#3 [[T#1] Interpret confidence level Margin of error does account for sampling confidence a ME T If we take many, many samples and level variability. (wider interval) calculate a confidence interval for DOES NOT ACCOUNT FOR: each, about ____7. of them will nonresponse nt Mel capture the true <u>p/m</u> (context) undercoverage (narrower interval) response bias

Estimating a Population Proportion (Activity: Which Way Will the Hershey's Kiss Land?)

- State and check the Random, 10%, and Large Counts conditions for constructing a confidence interval for a population proportion.
- Determine the critical value for calculating a C% confidence interval for a population proportion using a table or technology.

LT#2 Critical Values Important ideas: Formulas for CI for Z*=1.645 Point Estimate + margin 991. 2*=2.576 To find any %, use Large Counts Norm InvNorm (tail% SES Inv Norn

Estimating a Population Proportion (Activity: What Proportion of the Earth is Covered by Water?)

- Construct and interpret a confidence interval for a population proportion.
- Determine the sample size required to obtain a C% confidence interval for a population proportion with a specified margin of error.

Important i	ideas: our Step Process	LT#2 Choosing a Sample Size
STATE:	Parameter and confidence level	$MF = z^* \hat{p}(1-\hat{p})$ Solve for n
PLAN:	Name the procedure Check conditions	$\frac{1}{n} = \frac{1}{n} = \frac{1}$
DO:	General and specific formulas Plug numbers in, calculate interval	for conservative calculation.
CONCLUZE:	Interpret interval in context "We are 95% confident"	• If n has a decimal, always round up.

Confidence Intervals for a Difference in Proportions (Activity: Which Grade is More Likely to Go to Prom?)

- Determine whether the conditions are met for constructing a confidence interval about a difference between two proportions.
- Construct and interpret a confidence interval for a difference between two proportions.

Important ideas: Convincing Evidence Confidence interval for Pi-PZ 1st proportion is $p_{-}p_{2}$ > true difference in proportions two sample z interval for p_{1} - p_{2} -> 2nd proportion is Independent Random samples 310% Condition (-(+) > NO CONVINCING 1 avox counts evidence of a erence. Internal centains 0.

What is a Significance Test? (Activity: Is This Gender Discrimination?)

- State appropriate hypotheses for a significance test about a population parameter.
- Interpret a P-value in context.
- Make an appropriate conclusion for a significance test.

Important ideas:	LT#2 Interpret P-value	LT#3 Conclusion
[[1#1] Hypotheses		Because P-value a
NULL	Assuming Ho is true ()	we do/do not have
Ho: P = null	there is a <u>P-value</u> probability	convincing evidence for
	of getting the observed result	Ha (context).
ALTERNATIVE	or more extreme, purely by	P-volue < d ⇒ Reject Ho
Ha: $P > noll$ $M \neq value$		P-value >d ⇒ Fail to
F		leect the

Tests About a Proportion (Activity: Are You Sure Mrs. Gallas Isn't a Good Free Throw Shooter?)

- State and check the Random, 10%, and Large Counts conditions for performing a significance test about a population proportion.
- Calculate the standardized test statistic and P-value for a test about a population proportion.

Tests About a Proportion (Activity: Can You Taste the Rainbow?)

• Perform a significance test about a population proportion (4-step)

test statistic = <u>statistic-parometer</u> Important ideas: LT * 1 4-step process SD statistic STATE: parameter, statistic, hypotheses, or plaw: nome procedure, check conditions Do: General + specific formulas, picture, work, answer + for a two-sided test (Ha: P=+) CONCLUDE: Interpret P-value, conclusion double the P-value

Tests about a Difference in Proportions Intro (Activity: Is Yawning Contagious?)

- State appropriate hypotheses for a significance test about a difference between two proportions.
- Determine whether the conditions are met for performing a test about a difference between two proportions.

Significance Tests for a Difference in Proportions (Activity: Which Grade is More Likely to go to Prom?)

- Calculate the standardized test statistic and P-value for a test about a difference between two proportions.
- Perform a significance test about a difference between two proportions (4-step).

Type 1 and Type 2 Error (Activity: Should Rockford Switch to Bottled Water?)

• Interpret a Type I and a Type II error in context. Give a consequence of each error in a given setting.

Power (Activity: Will Mrs. Gallas Prove Herself?)

• Interpret the power of a significance test and describe what factors affect the power of a test.

] P(Reject Ho | Ha is true) Important ideas: Hower rn Ha true "If the is true (at a specific value in context) there is a <u>power</u> probability of finding convincing evidence to reject the null (context)." · To increase power: A sample, Palpha, A J

Stats Medic Important Ideas for CED Unit 7: Inference for Means

Estimating a Population Mean (Activity: How Much Does an Oreo Weigh?)

- Determine the critical value for calculating a C% confidence interval for a population mean using a table or technology.
- State and check the Random, 10%, and Normal/Large Sample conditions for constructing a confidence interval for a population mean.

Estimating a Population Mean (Activity: How Many States Can You Name?)

• Construct and interpret a confidence interval for a population mean.

ITATI Construct à Interpret: State: Parameter à Confidence Evel Plan: One sample t interval for M Important ideas: Formulas, work, answer DO Pt. Est + margin of error molud Conditions. Normal -O Pop & approx. On >30,01 10% Pandom: (3) sample shows no strong seew or outliers.

Confidence Interval for a Difference of Mean (Activity: Which Cookie Has the Most Chocolate Chips?)

- Determine whether the conditions are met for constructing a confidence interval for a difference between two means.
- Construct and interpret a confidence interval for a difference between two means.

Important ideas:	IT#2 4-step process
LT#1 Conditions	STATE: Parameter + confidence level
Random: Check to	PLAN: two sample + interval for M1-M2
10%: Ceach	Do: General formula, specific formula, numbers, answer
Normal/Large (ounts:)	Conclude: "We are' confident "

STATS MEDIC

Confidence Intervals for a Mean Difference (Activity: Is Climate Change Real?)

- Analyze the distribution of differences in a paired data set using graphs and summary statistics.
- Construct and interpret a confidence interval for a mean difference.

Significance Test for a Mean (Activity: Are You Getting Enough Sleep?)

- State and check the Random, 10%, and Normal/Large Sample conditions for performing a significance test about a population mean.
- Calculate the standardized test statistic and P-value for a test about a population mean.
- Perform a significance test about a population mean.

Significance Test for a Mean (Activity: What is Normal Body Temperature?)

- Perform a significance test about a population mean. (4-step)
- Understand the connection between confidence intervals and significance tests.

Important ideas: [LT#1] 4-Step <u>STATE</u> : Parameter, hypotheses, statistic, of <u>PLAN</u> : Name procedure, check conditions <u>O</u> Random <u>@</u> 10% condition <u>@</u> Normal/Large sample <u>D</u> : General, specific, work, test statistic, P-value <u>Content</u> of the part <u>D</u> and <u>m</u>	(LT*2) Confidence Interval * Two-sided tests IF Ho value Ho value plausible in interval Ho value not plausible not in interval Reject Ho A Ci. confidence interval will make the
<u>Canclude</u> : Interpret P-value Decisión, conclusion about Ha(context)	A C? confidence interval will materic same decision as a two-sided significance test with $d = 1 - C$? level.

Significance Test for a Difference of Means (Activity: Is One Form of the AP Exam Harder?)

- State appropriate hypotheses for a significance test about a difference between two means.
- Determine whether the conditions are met for performing a test about a difference between means.

Significance Test for a Difference of Means (Activity: Does Labeling Menus Reduce Calories?)

• Perform a significance test about a difference between two means. (4-step)

Significance Test for a Mean of Differences (Activity: Climate Change Part 2)

- Perform a significance test about a mean difference.
- Determine when it is appropriate to use paired *t* procedures versus two-sample *t* procedures.

Stats Medic Important Ideas for CED Unit 8: Inference for Categorical Data: Chi-Square

Chi-Square Goodness of Fit (Activity: Does Harvard Discriminate Against Asian Applicants? Part 1)

- State appropriate hypotheses and compute the expected counts and chi-square test statistic for a chi-square test for goodness of fit.
- State and check the Random, 10%, and Large Counts conditions for performing a chi-square test for goodness of fit.
- Calculate the degrees of freedom and P-value for a chi-square test for goodness of fit.

Important ideas: LT== 1 Hypotheses Ho: The claimed distribution	LT#2 Test statistic $\chi^2 = \sum \frac{(0-E)^4}{E}$ # longer $\chi^2 = mate convincing evidence for He$
Ha: The claimed distribution (context) is not true.	LT#3 df + P-value
Expected Count = NP	df'= k - 1

Chi-Square Goodness of Fit (Activity: Does Harvard Discriminate Against Asian Applicants? Part 2)

- Perform a chi-square test for goodness of fit.
- Conduct a follow-up analysis when the results of a chi-square test are statistically significant.

LT#2 X2 distribution Important ideas: LT#3 Follow up Analysis LT#1 Conditions If your test is statistically significant, find the largest component of X * right skewed (1) Random *starts at O 3 10%. (3 Large Counts: All expect cants≥S and explain

Chi-Square Test of Homogeneity (Activity: Does Gummy Bear Brand Matter?)

- State appropriate hypotheses and compute the expected counts and chi-square test statistic for a chi-square test based on data in a two-way table.
- State and check the Random, 10%, and Large Counts conditions for a chi-square test based on data in a two-way table.
- Calculate the degrees of freedom and P-value for a chi-square test based on data in a two-way table.
- Perform a chi-square test for homogeneity.

IT#2 Conditions a Hamogeneity Important ideas: IT#1 Hypotheses: -Random Ho: There is no difference in - 101. -variable cat. variable distribution for - Large Counts ogeneity > 1 sample opentation 1 5 monutation 2 Expected counts 35 LT#3 22 # Pualine There is a difference in 4 Stop: State, Plan, Do "cat. variable distribution for df = (Rows-1)(Columns-1) Conclude population 1 & population 2 x2cdf (Inver, upper, of Expected Counts (RONTOTOI)(Column Total) Table Tota

Chi-Square Test for Independence (Activity: Are Taco Tongue and Evil Eyebrow Independent?)

- Perform a chi-square test for independence.
- Choose the appropriate chi-square test in a given setting.

Important ideas:	LT#2] χ ² GOF
[IT*1] X ² test for independence	1 sample, 1 variable
Ho: There is not an association between	γ ² test for homogeneity
Ha: There is an association between	2+ samples, I variable X test for independence 1 sample, 2 variables

Stats Medic Important Ideas for CED Unit 9: Inference for Quantitative Data: Slopes

Sampling Distribution of Slopes (Activity: Does Seat Location Matter? Part 1)

- Identify statistics and parameters for linear regression.
- Use the sampling distribution of slopes to evaluate a claim.

Confidence Intervals for Slope (Activity: Does Seat Location Matter? Part 2)

• Construct and interpret a confidence interval for the slope of the population (true) regression line. (4-step)

Important ideas: PLAN: LT#1) (I for slope (4-step) one sample t interval for slope + MORGINOF POINT EPPOR STIMATE STATE Linear: B- true slope of the population Independent: See LSRL for X (context) previous Normal: and y (context). Equal SD: Dage otout 7. confidence level ONCLUDE Random:

Significance Tests for Slope (Activity: How Does GPA Relate to ACT Score?)

Perform a significance test about the slope of the population (true) regression line. (4-step)

