Ν	а	m	۱e	Э
	u			-

AP Statistics CED 1.1 Daily Video 1 (Skill 1.A)

Introducing Statistics: What Can We Learn from Data?

How do we identify the question to be answered or the problem to be solved in a given
context?
How can Statistics be used to help answer important, real-world questions based on data
that vary?
The Flint Water Crisis
Where? (population about 100,000)
• When?
What? The city switched its water supply from to the
 Why: What happened?
- Residents said the water and bad
- Some residents developed
· · · · · · · · · · · · · · · · · · ·
- City officials the water was to drink.
Was Flint's water safe to drink?
Collected Data: City officials measured lead levels in 71 water samples from Flint residents in January to June 2015. Here are the data (in part per billion). <i>Note:</i> Lead levels greater than 15 parts per billion are considered unhealthy.
Analyze Data: Here is a graph of the lead levels from the 71 waters samples.
I more than 10% of water samples have lead levels greater than 15 parts per billion, the water is not safe to drink.
What percent of lead levels in these 71 water samples exceed 15 parts per billion? (Draw a back around all samples greater that 15 and then count them as done on the video.)
We find: or of the samples had lead levels > 15 ppb
Interpret Results: Is Flint's tap water safe to drink?, because > 10%.

Name
Was Flint's Water Safe to Drink?
City officials omitted 2 water samples from the analysis marked in red: 20 parts per billion
(came from a business) and 104
parts per billion (came from a
home that used a filter).
0 10 20 30 40 50 60 70 80 90 100 Lead level (parts per billion)
Based on the lead levels of the 69 water samples, why did the city declare the water safe to
drink? Omitting the red dots, only or or of the remaining
water samples have lead levels than 15 parts per billion, and
·
What happened next?
• Virginia Tech researchers conducted a thorough study of lead levels in Flint's drinking
water. And found about of samples had lead levels above 15 parts per
billion.
Flint pediatrician Mona Hanna-Attisha found elevated blood levels in children had
since 2014.
 June 2014 – October 2015: Legionnaire's disease killed and sickened
Flint residents.
 2016:
Courts ruled for the, requiring water delivery and
replacement of the city's pipes.
Several government officials were
• Lead levels in Flint have remained action levels since July, 2016.
What Should We Take Away?
How do we identify the question to be answered or the problem to be solved in a given
context?
How can Statistics be used to help answer important, real-world questions based on data
that vary?
//

Name_____

AP Statistics CED 1.2 Daily Video 1 (Skill 2.A) The Language of Variation - Variables

	ables								
What Will We Learn?				_					
How do we identify the individuals ar	nd variabl	es in a	data	set?					
What are the two main types of varial	oles, and	how d	o we	disti	nguish	n ther	n?		
The structure of a data set				Masa	No. of	D			_
	ID	Туре	Price	year built	NO. OF bedrooms	Pool? Di	each (mi)	arking Zi	ip code
The individuals in a data set can be	001	House	649,995	1964	3	Y	0.23 C	arport 2	29577
	003	Townhome	399,900	1999	1	Y	4.15 0	utdoor 2	29575
, UI		Condo	550,000	2014	3	Y	6.69 0	utdoor	29579
·		House	822,000 499.900	2019	4	Y N	0.88 G	arage 2 arport 2	29572 29588
	,								
In this data set, the individuals are sh	own in th	e		oft	ne spr	eadsł	neet. li	ndivid	ual row
in this data set represent:		for sal	e in C	Charl	eston,	SC.			
Identifying variables									
A variable is a	that	chang	es fro	m		in	dividu	al to a	nother
		enang	00 110						
The variables in this data set are:									
The variables in this data set are.						ui e le le c	-		
					Va	riables	S		
	_								
	ID	Туре	Price	Year built	No. of bedroom	s Pool?	Distance to beach (mi)	Parking	Zip code
	001	House	649,995	1964	3	Y	0.23	Carport	29577
		Condo	422,750	2008	2	N	1.78	Garage	29575
		Condo	550,000	2014	3	Y	6.69	Outdoor	29588
		House	822,000	2019	4	Y	0.88	Garage	29572
	→ 006	House	499,900	2001	3	N	2.66	Carport	29588
Two Types of Variables									
A variable takes	s on value	es that	are c	ateg	ory na	mes	or gro	up lab	els.
A verieble telses en	ممين ما	winglau	ماريم	foro		المعرما		امعدما	
A Variable takes on	the nume	erical va	aiues	tor a	meas	urea	or cou	intea (quantity.
*Note: We can tell a quantitative vari	able beca	ause it	make	s ser	nse to	find a	an		
of those values									

	Name	
Classifying variables		
 Categorical data = Values of a 	in a	data set.
 Quantitative data = Values of a 	in a	a data set.
Not all variables that take	values are quantitat	tive! (e.g., zip
code)		
It is possible to make a	variable	by
grouping values. e.g.,		
Distance to beach = (<1 mile),	(1 -<3 miles) ,	(+3 miles)
Let's Practice – Identifying and Classifying Variable	es	
An AP Statistics teacher collected data from all 30	students in class with the f	following survey.
Grade level: (Circle one) 9 10 11 12	Age: (e	e.g., 16.39 years)
Favorite season: (Circle one) Fall Spring Summer	Winter Birth month: _	
Reaction time in an online test: milliseconds	s Height:	_ centimeters
Can you roll your tongue? Number of	people who live in your hou	sehold:
 (a) Favorite season (b) Number of people living in household (c) Number of students in this AP Statistics class (d) Whether or not you can roll your tongue 		
Classify each variable as categorical or quantitative	ý	
Age:		
Birth Month:		
Grade Level:		
Number of people living in household:		
What Should We Take Away?		
How do we identify the individuals and variables in Individuals:	a data set? described by	a set of data.
Variables: Characteristic that fr	om one individual to anot	her.
What are the two main types of variables, and how: Takes values: Takes numeric guantity.	[,] do we distinguish them? that are category names c i cal values for a measured	of labels. or counted

AP Statistics CED 1.3 Daily Video 3 (Skill 2.A)

Representing a Categorical Variable with Tables

What Will We Learn?

How can we represent categorical data in tabular form?

How do these tabular representations help us describe categorical data?

Representing categorical data

An online survey asked: "Which of the following superpowers would you most like to have? Invisibility Telepathy (read minds) Freeze time Super strength Fly

Here are data from a random sample of 50 high school students who completed the survey.

Freeze time	Invisibility	Telepathy	Super strength	Freeze time	Invisibility	Fly	Freeze time	Telepathy	Freeze time
Telepathy	Invisibility	Freeze time	Freeze time	Telepathy	Telepathy	Fly	Telepathy	Telepathy	Super strength
Invisibility	Telepathy	Super strength	Telepathy	Freeze time	Fly	Telepathy	Fly	Freeze time	Freeze time
Freeze time	Fly	Invisibility	Fly	Fly	Invisibility	Fly	Telepathy	Freeze time	Telepathy
Telepathy	Invisibility	Freeze time	Telepathy	Invisibility	Fly	Freeze time	Freeze time	Telepathy	Freeze time

Individuals: _____

Variable: _____ Type of variable: _____

How can we represent the distribution of this categorical variable??

Representing categorical data with frequencies

А gives gives the proportion or percent of individuals the number of individuals (cases) in each category. Count and fill in the numbers (cases) in each category for the remaining categories **Relative Frequency table** Frequency table Superpower preference Relative Frequency Superpower preference Frequency Fly 9 Fly Freeze time Freeze time

 Invisibility
 Invisibility

 Super Strength
 Super Strength

 Telepathy
 Telepathy

Describing categorical data (Use the above tables to answer.)

Which of the following statements about this data set is true?

(a) A majority of the students chose telepathy as their preferred superpower.

(b) Almost 3 times as many students chose super strength as fly for the superpower of preference

(c) Nearly half of the students picked either fly or invisibility as their preferred superpower.

(d) Exactly 50% of student chose either fly or telepathy as their preferred superpower.

(e) Invisibility is one of the more popular choices of preferred superpower.

Name										
Let's Practice – Describing categorical data from a frequency table										
The annual Monitoring the Future study surveys	Response	Frequency								
random sample of U.S. 8 th , 10 th , and 12 th grade	No risk	501								
students. One question on the 2018 survey asked:	Slight risk	782								
	Moderate risk	401								
How much do you think people risk harming	Great risk	377								
themselves (physically or in other ways), if they vape	Can't say, drug unfamiliar	191								
an e-liquid with nicotine occasionally?										
The frequency table summarized students' responses	* I otal:									
The frequency table summarizes students responses.										
Which of the following statements is not supported by	the table?									
(a) Over 1/3 of students responded with "Slight risk"										
(b) More than twice as many students responded "Slight	nt risk" as "Great risk"									
(c) A majority of students said that there was "No risk"	or "Slight risk"									
(d) Over 10% of students responded "Can't say drug u	infamiliar".									
(e) The proportion of students who responded "No risk	" is about 0.22.									
*Hint: You will need to convert the data to relative freq	uency (percentages!)									
What Should We Take Away?										
•										
How can we represent categorical data in tabular form	?									
With a or		·								
How do these tabular representations help us describe	categorical data?									
Counts and relative frequencies (_ or) of								
data reveal information th	at can be used to									
claims about the data in context.										

Name_____

AP Statistics CED 1.4 Daily Video 1 (Skill 2.B)

Represe	enting a C	Categorio	al Variak	ole with	Graphs				
What W	ill We Learn	?			•				
How car	n we represe	nt categor	ical data qi	raphically?)				
How do	these graph	ical repres	entations h	nelp us de	scribe cate	egorical da	ita?		
Represe	nting catego	orical data		1		5			
An onlin	e survev ask	ed: "Which	n of the fol	lowina sur	oernowers	would voi	ı most like	to have?	
	Invisibility	v Teler	hathy (read	minds)	Freeze ti	me Su	ner strenc	ith Flv	,
		, 1010			110020 11				
Here are	e data from a	a random s	ample of 5	0 high sch	nool stude	nts who co	mpleted t	he survey.	
Freeze tim	ne Invisibility	Telepathy	Super strength	Freeze time	Invisibility	Fly	Freeze time	Telepathy	Freeze time
Telepath	y Invisibility	Freeze time	Freeze time	Telepathy	Telepathy	Fly	Telepathy	Telepathy	Super strength
Invisibilit	y Telepathy	Super strength	Telepathy	Freeze time	Fly	Telepathy	Fly	Freeze time	Freeze time
Freeze tim	ne Fly	Invisibility	Fly	Fly	Invisibility	Fly	Telepathy	Freeze time	Telepathy
Telepath	y Invisibility	Freeze time	Telepathy	Invisibility	Fly	Freeze time	Freeze time	Telepathy	Freeze time
Individua	als:								
Variable	:				Type of v	ariable:			
How car	we represe	nt the dist	ribution of	this cated	orical varia	able??			
Represe	nting catego	orical data	with frequ	encies					
Represe			man noqu	cheres					
	Frequ	iency table	_	16	ו	Bar c	hart		
	Superpow	er Frequency	/	14	-				
	Fly	9		ت 10 ي					
	Freeze time	15		edneu			_		
	Invisibility	7		E 6					
	Super Stren	gth 3		2					
	Telepathy	16		0		ionza timo Invisit	vility Super strong	th Tolopathy	
					гту гт	Superpower	preference	un relepatity	
Represe	nting catego	orical data	with relativ	/e frequer	ncies				
	Relati	ve Frequency ta	ble		20	В	ar chart		
	Superpower	Relative	Frequency	0.1	28				
	preference			:.0 C	24 -				
	Fly	9/50 = 0	0.18 = 18%		20 -				
	Freeze time	15/50 = 0	0.30 = 30%	.0 utive	12 -				
	Invisibility	7/50 = 0 3/50 = 0	0.14 = 14%	.0 Kels	08 -				
	Telenathy	16/50 = 0	32 = 32%	0.0					7
	relepatity	10,00 - 0			Fly	Freeze time Inv Superpow	isibility Super stre ver preference	ngth Telepathy	
Malsing	hay shaws fo					eaberber	or protototoo		
iviaking		or categorie	cal data				,		
• L			name on t	ne norizor	ital axis; _		_/		_ on the
V	ertical axis.								
• S	cale axes: _		labels spre	ad out alc	ong	ax	is; Start		_ vertical
а	xis at a	nd go up i ′	n	_ increme	nts until y	ou equal c	r exceed ı	naximum	
_ ● 「)raw bars: M	/ lake the ha	ors	 in width	and leave	Ь	etween th	em The	
- L	of the bars re	nracent th	۵. ۵		frequencia	L as or relativ	ve frequer	cios	
C		piesent th	c		requencie				

Name_

AP Statistics CED 1.4 Daily Video 2 (Skill 2.D)

Representing a Categorical Variable with Graphs

What Will We Learn?

How can we represent multiple sets of data for the same categorical variable in tabular form? How can we represent multiple sets of data for the same categorical variable graphically? How do these tabular and graphical representations help us compare multiple sets of categorical data?

Comparing categorical data

A high school teacher gave a survey to the students in all of her classes on the first day of school. The survey asked each student to record their sex (male or female). Another question asked:

"Which of the following superpowers would you most like to have?

Invisibility Telepathy (read minds) Freeze time Super strength Fly

The teacher wants to compare superpower preferences for male and female students. Here are data for the 80 boys who completed the survey.

Freeze time	Fly	Freeze time	Invisibility	Freeze time	Freeze time	Fly	Fly	Fly	Freeze time
Invisibility	Invisibility	Freeze time	Freeze time	Invisibility	Fly	Freeze time	Invisibility	Super strength	Freeze time
Freeze time	Fly	Super strength	Super strength	Super strength	Freeze time	Fly	Freeze time	Freeze time	Fly
Freeze time	Fly	Fly	Super strength	Invisibility	Freeze time	Telepathy	Invisibility	Freeze time	Fly
Freeze time	Fly	Invisibility	Freeze time	Telepathy	Telepathy	Telepathy	Invisibility	Fly	Fly
Fly	Invisibility	Invisibility	Freeze time	Freeze time	Fly	Freeze time	Freeze time	Super strength	Invisibility
Fly	Freeze time	Super strength	Invisibility	Fly	Super strength	Freeze time	Super strength	Invisibility	Fly
Fly	Telepathy	Telepathy	Super strength	Freeze time	Freeze time	Freeze time	Freeze time	Invisibility	Telepathy

Here are data for the 125 girls who completed the survey.

Telepathy	Telepathy	Invisibility	Telepathy	Telepathy	Fly	Freeze time	Fly	Telepathy	Super strength	Fly
Telepathy	Freeze time	Freeze time	Fly	Fly	Freeze time	Fly	Freeze time	Fly	Fly	Telepathy
Invisibility	Super strength	Telepathy	Invisibility	Fly	Telepathy	Telepathy	Fly	Freeze time	Super strength	Freeze time
Invisibility	Telepathy	Fly	Fly	Telepathy	Freeze time	Telepathy	Fly	Freeze time	Invisibility	Freeze time
Freeze time	Freeze time	Invisibility	Telepathy	Telepathy	Super strength	Fly	Telepathy	Fly	Freeze time	Invisibility
Fly	Freeze time	Fly	Invisibility	Telepathy	Invisibility	Invisibility	Fly	Fly	Freeze time	
Telepathy	Telepathy	Fly	Fly	Invisibility	Invisibility	Fly	Invisibility	Freeze time	Freeze time	
Freeze time	Telepathy	Freeze time	Fly	Telepathy	Fly	Fly	Fly	Telepathy	Fly	
Telepathy	Fly	Invisibility	Invisibility	Freeze time	Fly	Invisibility	Freeze time	Freeze time	Fly	
Freeze time	Telepathy	Telepathy	Invisibility	Telepathy	Invisibility	Fly	Invisibility	Fly	Fly	
Fly	Telepathy	Freeze time	Invisibility	Fly	Fly	Fly	Fly	Telepathy	Super strength	
Freeze time	Freeze time	Telepathy	Fly	Invisibility	Freeze time	Telepathy	Fly	Telepathy	Freeze time	

How can we compare the distribution of superpower preference for these two groups?

Comparing categorical data with frequencies

The frequency table summarizes the data on the superpower preference for the 80 male and the 125 female students in this high school teacher's classes. (Copy frequencies from video)

	Fly	Freeze Time	Invisibility	Super strength	Telepathy
Male					
Female					

Which of the following statements is supported by the table?

(a) Fly was the most preferred superpower for both males and females. _

(b) Freeze time was an equally popular choice of preferred superpower for males and females. _

(c) Invisibility was a more popular choice of preferred superpower for females than males.

(d) Super strength was twice as popular among males as females for their preferred superpower. _

(e) Telepathy was the preferred superpower for less than 10% of males but almost 25% of females.

0.20

Comparing categorical data with relative frequencies

The frequency table summarizes the data on superpower preference for the 80 male and 125 female students in the high school teacher's classes.

	Fly	Freeze time	Invisibility	Super strength	Telepathy
Male	20	28	15	10	7
Female	40	28	21	5	31

The different sizes of the two groups – 80 and 125 – makes it hard to compare the distribution of superpower preference for males and females. Comparison is easier if we calculate relative frequencies within each group. (Calculate relative frequencies below.)

Using bar charts to compare categorical data

Let's Practice: Describing categorical data from a bar chart In 2019, Common Sense Media surveyed a random sample of more that 1600 U. S. 8- to 18-year-olds. The bar chart compares data on average daily screen media use by tweens (ages 8 to 12) and teens ages (13 to 18) in the sample. *Note: 0+ to 2 hours indicates an average more than 0 hours up to and including 2 hours per day.

Which of the following statements is supported by the graph?

(a) Tweens generally report more screen media use than teens.

(b) About half of tweens and teens reported 2+ to 8 hours of screen media use per day. _

(c) For both tweens and teens, the second most reported amount of screen media use per day is more than 8 hours. _____

What Should We Take Away?

How can we represent multiple sets of data for the same categorical variable in tabular form? With a ______ or _____ table.

How can we represent multiple sets of data for the same categorical variable graphically? With a _____ bar graph.

How do these tabular and graphical representations help us compare multiple sets of categorical data?

Comparing ______ between and within the groups reveals information that can be used to ______ about the data _____

Name___

AP Statistics CED 1.5 Daily Video 1 (Skill 2.B)

Representing a Quantitative Variable with Graphs
What Will We Learn?
What are the two types of quantitative variable, and how do we distinguish them?
What types of graphs can be used to represent quantitative data and what are the advantages and
disadvantages of each?
A Quick Review
Categorical Variable: A variable that takes values that are or or
Quantitative Variable: A variable that takes values for a or
quantity.
- A variable can take on a number of values (with gaps)
_ A
values cannot be counted (no gaps)
Examples:
Was Flint's water safe to drink?
City officials measured lead levels in 71 0000000000001111222222222223333
3 3 3 3 3 3 3 4 4 5 5 5 5 5 5 5 5 6 6 6 6 7 7 7 8 8 9 10 10 11 water samples from Flint residents in 13 18 20 21 22 20 42 42 104
January to June 2015. Here are the data (in
part per billion):
Is this discrete or continuous data?
Represent this data with a graph.
0 10 20 30 40 50 60 70 80 90 100 Lead level (nnb)
Advantages:
Shows every of the distribution.
<u>Disadvantages</u>
Difficult to make for data sets.
Stem and leaf plot ••••••••••••••••••••••••••••••••••••
Advantages:
Shows every
value in the data set.
Easy to see the ¹⁰ ⁴ ³ KEY: 10! ⁴ = 104
of the distribution.
6
Disadvantages:
Difficult to make for
data sets.
STATS MEDIC

	Name		
Histogram With a histogram you are going to use _	of values.		
$\frac{55}{40}$	22 20 18 14 12 10 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
Easy to see of the distribution.			
Disadvantage	ne data set		
What Should We Take Away?			
What are the two types of quantitative variable, and how do we distinguish them? : countable (with gaps) : not countable (no gaps)			
What types of graphs can be used to represent quantitative data and what are the advantages and disadvantages of each?			
and: (+) s	hows value, easy to see,		
(-) hard to make for data sets.			
: (+) easier to make for data sets, easy to see, (-) does not show value.			

STATS MEDIC

Name	
Unusual Features	
• 8 •	
Was Flint's water safe to drink?	
Describe the distribution of lead level for the 71 water samples of Flint.	
8	
88.	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Lead level (ppb)	
Shape: The distribution of lead levels is and to the rig	ht.
Center: The lead level is around	
Variability: Lead levels from a value of 0 to a value of	
104 parts per billion.	
Unusual Features: There is a of values between, a large	
between, and several possible	
*Note: Make sure that you include the of the problem in your solution!!!	
What Should We Take Away?	
What are the important characteristics to discuss when describing the distribution of quantitative	
data?	
There are four characteristics to include in your solution.	
, and	
What are the best ways to discuss the important characteristics when describing a distribution of	
quantitative data?	
Shape:	
Center and Variability: More in Daily Video 1.7	
Unusual features:	

	Name		
AP Statistics CED 1.7 Daily Video 1 (S	Skill 2.C)		
Summary Statistics for a Quantitative \	Variable		
What Will We Learn?			
What summary statistics can be used to describe the center and position of a distribution of quantitative data?			
What summary statistics can be used to describ	be the variability of a distribution of quantitative data?		
Was Flint's water safe to drink? City officials measured lead levels in 71 water samples from Flint residents in January to June 2015. Here are the data (in part per billion):	0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 2 2 2 2		
Use summary statistics to describe the center a	and variability of the distribution of lead levels.		
Summary Statistics for Center			
Mean: Sum of the data values	by the of values. $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$		
Median:			
value of an c	data set (number of values)		
value of an of the middle va	value of an ordered data set (even number of values)		
O1 and $O3$.			
The first quartile is the	of the half of the ordered data set		
The third quartile is the	of the half of the ordered data set.		
Was Elipts water safe to dripk? (See data and g			
Was Fints water sale to dink: (See data and g	yraph above,		
Use summary statistics to describe the center at	and variability of the distribution of lead levels.		
Mean: $\overline{x} = \frac{(0+0+0++42+42+104)}{71} = \frac{519}{71}$	$\frac{9}{1} = 7.31$		
Median: Because there is an odd (71) number o	of values, the value is the median.		
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 2 2 2 2 2			
The median is Interpreting th 3 ppb and about	his median: About of the lead levels are _are above 3 ppb.		
Q1: The first quartile is the of the of the of the of the of the gradient of t	the first half of the data (don't include median). 2 2 2 2 2 2 3 3 3 3 3 3 3 <mark>3 (Circle Q1)</mark>		
Q3: The third quartile is the of the second half of the data (don't include median) 3 3 3 4 4 5 5 5 5 5 5 5 6 6 6 6 7 7 7 8 8 9 10 10 11 13 18 20 21 22 29 42 42 104 (Circle Q3)			

📥 STATS MEDIC

Name
Summary Statistics for Variability
Range: The difference between the value and the data value.
Interquartile Range (IQR): Difference between the and quartiles. (Q3 – Q1)
Standard Deviation: distance that each value is $s_x = \sqrt{\frac{1}{1}\sum_{i=1}^{1} \sum_{j=1}^{1} (x_i - \overline{x})^2}$
deviation is the
Was Flint's water safe to drink?
Using summary statistics to describe the variability of the distribution of lead level (ppb) for the samples of 71 water samples in Flint.
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 2 2 2 2
Range: = =
The range of the distribution of lead levels is (Range is a SINGLE VALUE!)
Interguartile Range:
The of the values for lead level has a range of
Standard deviation:
$s_x = \sqrt{\frac{1}{n-1}\sum_{i=1}^{n-1}(x_i - \overline{x})^2}$
Steps:
 2 up all of these values and by (n-1). (What you have here is called the variance.)
$s_{x} = \sqrt{\frac{1}{71 - 1} \left((0 - 7.31)^{2} + (0 - 7.31)^{2} + \dots + (42 - 7.31)^{2} + (104 - 7.31)^{2} \right)} = \sqrt{205.84} = 14.35$
The lead level from each sample from
the mean of
What Should We Take Away?
What summary statistics can be used to describe the center and position of a distribution of
quantitative data?
Center:
Position:
What summary statistics can be used to describe the variability of a distribution of quantitative data?
Variability:

	Name
AP Statistics CED 1.7	Daily Video 2 (Skill 4.B)
Summary Statistics for	r Quantitative Variable
What Will We Learn?	
How can we determine i	if a value in a data set is an outlier?
Which summary statistic	s are resistant and which are nonresistent?
Which measures of center	er and variability are best for describing a distribution?
Was Flint's water safe to	> drink?
City officials measured le	ead levels in 71 00000000000011112222222222333
water samples from Flint	t residents in 333333334455555556666677788910101 13 18 20 21 22 29 42 42 104
January to June 2015. H	lere are the data
(in part per billion):	888.
	888
	0 10 20 30 40 50 60 70 80 90 100
	Lead level (ppb)
	n mean SD min Q1 med Q2 max
Summary Statistics from	1 previous videos: 71 7 31 14 347 0 2 3 7 104
Determining Outliers –	Two Methods
Method 1 – An outlier is	a value more that below the
and more that	above the
Low outlier <	; <; <; <;
I nere are low outile	ers
High outlier >	• >
There are high ou	tliers! They are:
Method 2 – An outlier is	a value located 2 or more above, or below
the mean.	
Low outlier <	; <; <;
There are low outlie	ers.
High outlier >	; >; >; >;
There are high ou	tliers! They are:

Name			
How do outliers influence summary statistics?			
Here are the original summary statistics. $\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
Image: heat summary statistics with the highest outlier removed. n $mean$ SD min Q_1 med Q_3 max $range = 42 - 0 = 42$			
The,, and were highly influenced by removing the outlier ()			
The and the were not greatly affected. ()			
What measures of center and variability are best?			
8 0 10 20 30 40 50 60 70 80 90 100 Lead level (ppb)			
The answer depends on the shape of the distribution.			
For a distribution, use for center and for variability. For a distribution, use for center and			
What Should We Take Away?			
How can we determine if a value in a data set is an outlier?			
Less the below Q1 or more the above Q3			
• away from the mean.			
Which summary statistics are resistant and which are nonresistent?			
Resistant:			
Nonresistant:			
· · · · · · · · · · · · · · · · · · ·			
Which measures of center and variability are best for describing a distribution?			
For and			
For and			

AP Statistics CED 1.8 Daily Video 1 (Skill 2.B, 2.A)

What Will We Learn?	
What is the five-number summary and how do	we use it to make a boxplot?
How does the shape of the graph influence the	e relative relationship of the mean and median?
Was Flint's water safe to drink?	
City officials measured lead levels in 71 water	samples from Flint residents in January to June 2015.
Here are the data (in part per billion):	
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 2 2 2 2
Here is the summary statistics from previous vi	ideo: n mean SD min Q ₁ med Q ₃ max 71 7.31 14.347 0 2 3 7 104
Find the five-number summary and use it to m	ake a boxplot.
Five-number summary and boxplot (Circle the	data and label the line below as you watch video.)
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 2 2 2 2	2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 4 4 5 5 5 5 5 5
0 10 20 30 40	50 60 70 80 90 100
Lea	a level (ppb)
Boxplot	a level (ppb)
Boxplot Advantages: Shows thea Splits the data intoa	a level (ppb)
Boxplot Advantages: Shows thea Splits the data intoa	а level (ррб) and
Boxplot Advantages: Shows thea Splits the data intoa Disadvantages: Decemptodes	а level (ррб)
Boxplot Advantages: Shows thea Splits the data intoa Disadvantages: Does not show	and
Boxplot Advantages: Shows thea Splits the data intoa Disadvantages: Does not show Can hide certain features of the	and
Boxplot Advantages: Shows thea Splits the data intoa Disadvantages: Does not show Can hide certain features of the Measures of center – what do you notice?	and
Boxplot Advantages: Shows thea Splits the data intoa Disadvantages: Does not show Can hide certain features of the Measures of center – what do you notice? n mean SD min Q1 med Q3 max 71 7.31 14.347 0 2 3 7 104	and
Boxplot Advantages: Shows thea Splits the data intoa Disadvantages: Does not show Can hide certain features of the Measures of center – what do you notice? n mean SD min Q1 med Q3 max 71 7.31 14.347 0 2 3 7 104 As a general rule:	and value. value. of the distribution. is much larger than the median! ean is edian is
Boxplot Advantages: Shows thea Splits the data intoa Disadvantages: Does not show Can hide certain features of the Measures of center – what do you notice? n mean SD min Q1 med Q3 max 71 7.31 14.347 0 2 3 7 104 As a general rule: • Skewed distribution	and
Boxplot Advantages: Shows thea Splits the data intoa Disadvantages: Does not show Can hide certain features of the Measures of center – what do you notice? n mean SD min Q1 med Q3 max 71 7.31 14.347 0 2 3 7 104 As a general rule: Skewed distribution Skewed distribution	and
Boxplot Advantages: Shows thea Splits the data intoa Disadvantages: Does not show Can hide certain features of the Measures of center – what do you notice? In mean SD min Q1 med Q3 max 71 7.31 14.347 0 2 3 7 104 The mean SD min Q1 med Q3 max Skewed distribution Mass a general rule: Skewed distribution Skewed distribution; mean	and

		Name		
What S	Should We Ta	ke Away?		
What is the five-number summary and how do we use it to make a boxplot?				
		· · · · · · · · · · · · · · · · · · ·		
Use th	Use the to split the data into			
How does the shape of the graph influence the relative relationship of the mean and median?				
•	Skewed	distribution, mean median		
•	Skewed	distribution, mean median		
•		distribution: mean median		

AP Statistics CED 1.9 Daily Video 1 (Skill 2.D)

\sim ·	1	r	. • •	• • •
(omnaring	distributions	ot a	auantitative	variable
Compannig	alstinutions	or a	quantitative	variable

What Will We Learn?

What are the important characteristics to discuss when comparing distributions of quantitative data? What is needed for a complete response when comparing distributions of quantitative data?

A Quick Review

How to Describe a Distribution of Quantitative Data

Shape: _____

Center: ____

Variability: _____

Unusual features: _____, ____, ____, ____, Example: How to Compare Distributions of Quantitative Data (Free Response Question: 2015 #1)

Two large corporations, A and B, hire many new college graduates as accountants at entry-level

positions. In 2009 the starting salary for an entry-level accountant position was \$36,000 a year at both corporations. At each corporation, data were collected from 30 employees who were hired in 2009 as entrylevel accountants and were still employed at the corporation five years later. The yearly salaries of the 60 employees in 2014 are summarized in the boxplots to the right.

(a) Write a few sentences comparing the distributions of the yearly salaries at the two corporations.

Model Solution				
The of the distribution of yearly sa	alary appears to be	_ (fairly symmetric) for		
corporations A and B. The	salary is approximately the	e same for		
corporations. The and	of the salaries are g	reater for Corporation		
A than for Corporation B. The	salaries for Corporation	salaries for Corporation A are outliers while		
Corporation B has				
Note that this Model Solution address all four im	portant characteristics. (Highlig	ght these key words,		
as you watch the video!) Additionally, highlight t	ne comparative words used in t	the solution. Finally,		

highlight the words that supply the **context** to the solution.

Name

(b) Suppose both corporations offered you a job for \$36,000 a year as an entry-level accountant.

			Yearly Sal	ary (thousa	inds)	
	\$30	\$40	\$50	\$60	\$70	\$80
Corporation B			-			
Corporation A			-		*	*

(i) Based on the boxplots, give one reason why you might choose to accept the job at corporation A.

Five years after starting, as least 3 out of 30 (10%) of the salaries at Corporation A are greater than the maximum salary at Corporation B. If I accept the offer from Corporation A, I might be able to make a higher salary at Corporation A than at Corporation B.

(ii) Based on the boxplots, give one reason why you might choose to accept the job at corporation B.

Five years after starting, the minimum salary at Corporation B is greater than at corporation A. It fact, at Corporation A it looks like some people are still making the starting salary of \$36,000 and never received a raise in the five years since they were hired. So, if I work at Corporation A, I might never receive a raise in salary.

(Highlight the key parts of the responses as you watch the video. Notice that each response refers to a key feature of the boxplot!)

What Should We Take Away?

What are the important characteristics to discuss when comparing distributions of quantitative data?

_____, and __

What is needed for a complete response when comparing distributions of quantitative data?

Add	ress	the	
Use			

Include _____

Ν	а	m	۱e	Э
1 1	a	11	16	=_

AP Statistics CED 1.10 Daily Video 1 (Skill 2.D, 3.A)

The Normal Distribution

What Will We Learn?			
How can we use percentile to describe the position of a value in a quantitative data set?			
How can we use standardized scored to describe the position of a value in a quantitative data set?			
Determining relative position			
Percentile:			
Percentile is the of data values to a given value.			
Interpret: "The value of is at the p th percentile. About (p) percent of the values are less than or equal to"			
Standardized score:			
A standardized score for a given data value is calculated as			
standardized score = z -score = $\frac{x_i - \mu}{\sigma}$			
Interpret: "The value of is (z-score) standard deviations above/below the mean."			
CAUTION: and can be calculated for distributions with any shape!			
Was Flint's water safe to drink?			
City officials measured lead levels in 71water samples from Flint residents in January to June 2015. Here are the data (in part per billion):			
nmeanSDminQ1medQ3max717.3114.3470237104			
Find the percentile and z-score for the water samples of 20 ppb and 2 ppb.			
For the water sample of 20 ppb			
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 2 2 2 2			
Percentile: = "The value of 20 ppb is at the percentile. About of the values are to 20 ppb.			
z-score:			
The value of 20 ppb is standard deviations the mean.			

Name
For the water sample of 2 ppb
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 2 2 2 2
n mean SD min Q ₁ med Q ₃ max
Percentile: = 71 7.31 14.347 0 2 3 7 104
The value of 2 ppb is at the percentile. About of the values are to 2 ppb
z-score:
The value of 2 ppb is standard deviations the mean.
What Should We Take Away?
How can we use percentile to describe the position of a value in a quantitative data set?
Percentile is the of data values a given value.
How can we use standardized scored to describe the position of a value in a quantitative data set?
A z-score tells us the number of standard deviations or the mean.

AP Statistics CED 1.10 Daily Video 2 (Skill 2.D, 3.A)

The Normal Distribution

What Will We Learn?

What is a normal distribution?

How can we use the empirical rule to find the percent of data values in a given interval for a normal distribution?

How can we use the z-scores to find the percent of data values in a given interval for a normal distribution?

distribution?	
Normal Distribution:	
• A normal distribution is (sometimes called a) and
) and
Many variables in the real world can be	by
a normal distribution (height, temperature, blood pressure).	
Normal distributions are determined by the () and ()	the
().	
• Label the mean and indicate one standard deviation as done in the v	ideo.
Example: What is normal blood pressure?	
Systolic blood pressure for adults can be modeled with a normal distribution	with a mean of
110 mmHg and a standard deviation of 10 mmHg.	
You always want to start with a picture.	\backslash
Then, label the mean at the very center	
and then label the values that are 1, 2,	
and 3 standard deviations above and	
below the mean.	
(Shade the areas as you watch the video.)	
(Shade the dieds as you watch the video.)	
Within 1 standard deviation of the mean:	
Within 2 standard deviations of the mean:	
Within 3 standard deviations of the mean:	
This is often referred to at the 68-95-99.7 Rule or often referred to as The En	npirical Rule.

Name
What is normal blood pressure?
What percent of adults have a systolic blood
pressure below 100 mmHg?
(Shade the distribution as you watch the video.)
80 90 100 110 120 130 140
What percent of adults have a systolic blood
pressure below 130 mmHq?
(Shade the distribution as you watch the video.)
What percent of adults have a systolic blood
pressure below 125 mmHa?
(Shade the distribution as you watch the video)
(Shade the distribution as you watch the video.)
Because 125 is not exactly 1, 2, or 3 standard
deviations from the mean, so we cannot use the
Empirical Rule. We need a new toolThe z-score!!
z -score = $\frac{x_i - \mu}{\mu}$
σ
Once we know the z score, we will use Table A to determine the area. Pay attention to the video to
loarn how to use Table A)
learn now to use Table A.)
A z score of This means that about of adults have a system
hlood pressure 125 mmHq
What Should We Take Away?
What is a normal distribution?
A model for that often appears in the real world
How can we use the empirical rule to find the percent of data values in a given interval for a normal
distribution?
About of the data is within SD of the mean About of the data is withing
SD of the mean About of the data is within SD of the mean. About of the data is withing
SD of the mean. About of the data is within SD of the mean.
How can use the approache find the persent of data values in a given interval for a second
now can we use the z-scores to find the percent of data values in a given interval for a normal
Calculate a and then use!

AP Statistics CED 1.10 Daily Video 3 (Skill 2.D, 3.A)

The Normal Distribution

What Will We Learn?

How can we use the z-scores to find the percent of data values in a given interval for a normal distribution (left, right, between)?

How can we find a value, given an area (proportion) for a normal distribution? Quick Review – Area to the left Systolic blood pressure for adults can be modeled with a normal distribution with a mean of 110 mmHg and a standard deviation of 10 mmHg. What percent of adults have a systolic blood pressure below 125 mmHg? z-score = $\frac{x_i - \mu}{\sigma}$ $z = \frac{125 - 110}{10} = 1.50$ 100 110 120 125 130 140 Using Table A, we found the z-score of 1.50 = _____ Which tells us that about of adults have a systolic blood pressure less than 125 mmHg. Example: Area to the right Some experts consider a systolic blood pressure above 125 mmHg to be considered as "elevated". What proportion of adults have an "elevated" systolic blood pressure? (If the area to the left is known, you can easily find the area to the right by simply subtracting it from 1.) 110 120 125 130 140 Area = The proportion of adults with an "elevated" blood pressure is _ Example: Area between Some experts consider a systolic blood pressure between 120 and 129 mmHg to be hypertension stage 1. What proportion of adults are hypertension stage 1? (Always start by drawing a picture. Then, label and shade the region you are trying to find.) Find z-score of 120 and area from Table A: Find z-score of 129 and area from Table A: 100 29¹ 130 90 110 120 140 80 Area = The proportion of adults that are hypertension stage 1 is about

