Algebra 1 Unit 1: Generalizing Patterns | Lesson | Learning Targets | |---|--| | 1.1 Equations that Describe Patterns | Use generalizing language to describe the relationship between two or more variables presented verbally, numerically, or algebraically. Write equations that describe the relationship between two quantities in context. Evaluate algebraic expressions. | | 1.2 Describing Arithmetic Patterns | Recognize scenarios with a common difference between terms as arithmetic sequences. Describe arithmetic sequences with pictures, tables, words, and graphs. | | 1.3 Making Use of Structure | Look for and make use of structure. Use an identified recursive or explicit pattern to extend the pattern to other values. Begin to make generalizations using language such as always, every time, the pattern is, the rule is, any number, for all numbers, etc. | | 1.4 Writing Explicit Rules for Patterns | Understand that explicit rules can be used to find any term in a sequence, without knowing the one before it. Make use of structure to generalize a formula for the nth term of a sequence. | | 1.5 Patterns and Equivalent Expressions | Understand algebraic equivalence by comparing multiple ways of representing a rule Create an algebraic expression that represents the general case of a pattern. Explore how equivalent expressions can reveal distinct properties of the quantity they represent. | | 1.6 Describing Geometric | Recognize and describe geometric | |--------------------------------|--| | Patterns | sequences by identifying a common ratio between terms. | | | Distinguish between arithmetic and geometric growth. | | 1.7 Connecting Patterns Across | Connect visual, numerical, verbal, and | | Multiple Representations | algebraic representations of arithmetic and geometric patterns. | | | Choose an appropriate representation to
explain or visualize a pattern; consider the
advantages and disadvantages of various
representations | ## Algebra 1 Unit 2: Linear Relationships | Lesson | Learning Targets | |--|--| | 2.1 Proportional Reasoning | Recognize when two quantities have a proportional relationship and describe what this means. Use proportional reasoning to find unknown quantities by scaling in tandem or finding a unit rate. Write proportional relationships in the form y = kx for some constant multiple, k. | | 2.2 Proportional Relationships in the Coordinate Plane | Graph proportional relationships in the coordinate plane. Interpret points in the coordinate plane in context. Understand that the set of all points satisfying a proportional relationship form a line passing through the origin. | | 2.3 Slope of a Line | Understand that the slope of a line represents a rate of change. Determine the slope between two points by dividing the change in y by the change in x. Interpret a slope as the change in the output per unit of input. | | 2.4 Linear Equations | Write an equation given a starting value and a constant rate of change. Interpret the coefficients of a linear equation written in slope-intercept form (rate and starting value). | | 2.5 Graphing Lines | Identify the y-intercept and slope from a linear equation. Graph lines given a point and a slope. Write the equation of a line shown on a graph. | | 2.6 Linear Reasoning | Write equations that model linear relationships. Solve for missing quantities of a linear relationship. | | | Find y and y intercepts of lines using tables | |-----------------------------------|---| | | Find x- and y-intercepts of lines using tables, | | | graphs, and linear equations. | | 2.7 Horizontal and Vertical Lines | Interpret scenarios that can be represented with horizontal lines. Explain why horizontal lines have a slope of zero and vertical lines have an undefined slope. Write equations of horizontal and vertical | | | lines, including the x- and y- axes. | | 2.8 Standard Form of a Line | Understand that the standard form of a line represents possible combinations of x and y to reach a fixed sum. Find and interpret x- and y-intercepts of lines given in standard form. Identify the slope and y-intercept of lines given in standard form. | # Algebra 1 Unit 3: Solving Linear Equations and Inequalities | Lesson | Learning Targets | |---|---| | 3.1 Exploring Equivalence | Understand that an equation can be written in many equivalent ways that have the same solution. Use properties of equality to write equivalent equations. | | 3.2 Representing and Solving
Linear Problems | Write linear equations that can be solved to find missing information about a situation. Write linear equations that can be solved to find missing information about a situation. Understand each part of a linear equation in context and use this context to isolate the desired value. | | 3.3 Solving Linear Equations by Balancing | Use comparative reasoning with constant and variable terms to find solutions to linear equations. Understand the solution to an equation as the equalizer that makes two variable expressions equal. Understand the solution to an equation as the equalizer that makes two variable expressions equal. | | 3.4 Reasoning with Linear
Equations | Extend the balancing method of solving equations to negative coefficients and negative solutions. Determine the difference between two terms by considering distance on a number line. | | 3.5 Solving Equations using Inverse Operations | Understand that inverse operations undo the original operation and must be completed in reverse order to isolate the variable. Use visuals like double number lines or bar models to reason about the solution of an equation. | | 3.6 Representing Scenarios with Inequalities | Use numbers, variables, and inequality symbols to represent relationships. Interpret inequalities that represent constraints. | | 3.7 Solutions to 1-Variable Inequalities | Understand that the solutions to an inequality are the range of values that make the inequality true. Solve simple inequalities by extending strategies related to solving equations. Represent solutions to an inequality using a ray on the number line. | | 3.8 Reasoning with Inequalities | Solve inequalities by making equivalent inequalities. Reason about the direction of the inequality symbol. | |--------------------------------------|---| | 3.9 Writing and Solving Inequalities | Write and solve inequalities to represent the constraints and solutions to a problem. Use context, testing, or structure to determine if the solution to an inequality is greater or less than the solution of the related equation. | ## Algebra 1 Unit 4: Linear Systems and Inequalities | Lesson | Learning Targets | |---|--| | 4.1 Interpreting Linear Systems in Context 4.2 Interpreting Solutions to a Linear System Graphically | Solve for a break-even or equilibrium point by setting two linear expressions in slope-intercept form equal to one another. Interpret the graph of a linear system before, at, and after the intersection point in context. Recognize that the point of intersection between two distinct non-parallel lines represents where the two equations have the same x-value and y-value. Understand that a solution to an equation is any ordered pair on its graph and the solution to a system of equations is the ordered pair that lies on the graphs of both equations. Explain what the graph of a linear system looks like with 0, 1 or infinitely many solutions by describing the slopes and y-intercepts of the equations. | | 4.3 Substitution | Understand that equivalent expressions can be substituted for one another. Use the relationship between variables to rewrite an equation with two variables in terms of one variable and solve the system. | | 4.4 Solving Linear Systems using Elimination | Given a system of two equations, write new equations by adding, subtracting, or scaling the given equations. Choose an appropriate strategy for eliminating one variable by adding the equations or scaling and subtracting the equations. | | 4.5 Determining Number of Solutions Algebraically | Interpret scenarios with linear systems that have 0, 1 or infinitely many solutions. Identify the algebraic structures that make a system of linear equations have 0, 1, or infinitely many solutions. | | 4.6 Graphing Linear Inequalities in Two Variables | Graph an inequality in two variables by graphing the related equation and shading in the appropriate direction. Understand that the shaded region represents all the ordered pairs that satisfy the inequality. | | 4.7 Writing and Solving Systems of Linear Inequalities | Understand that the solutions to a system of linear equalities is the set of all ordered pairs that make both inequalities true and are represented by the overlap of the shaded regions. Use the constraints of a problem to write and graph the inequalities and look for solutions. | ## Algebra 1 Unit 5: Functions | Lesson | Learning Targets | |--|---| | 5.1 Using and Interpreting Function Notation | Understand that f(a) denotes the output of a function f corresponding to the input a. Use function notation to describe a function's input and corresponding output. Interpret statements that use function notation in terms of a context. | | 5.2 Concept of a Function | Understand that a function from one set (called the domain) to another set (called the range) is a mapping that assigns to each element of the domain exactly one element of the range. Determine if a relation is a function or not. | | 5.3 Functions in Multiple
Representations | Evaluate functions represented as a graph, table, or equation. | | 5.4 Interpreting Graphs of Functions | Identify and interpret key features of a function from its graph: domain, range, intervals of increasing/decreasing, intercepts, maxima and minima. Determine an appropriate domain for a function based on the context it describes. | | 5.5 From Sequences to Functions | Understand that sequences are a special type of function that assign to each term number, n, a term value, f(n). The domain of this function is the positive integers. Use function notation to write a rule for a sequence. Use notation f(n + 1) and f(n - 1) to represent next and previous terms, respectively. | | 5.6 Linear Functions | Identify if a function is linear or not. Use and interpret function notation to describe key features of linear relationships. Write equations for linear functions from a table, graph, or verbal description. | | 5.7 Piecewise Functions | Understand that piecewise functions have different
rules for different intervals of their domain. Evaluate piecewise functions. | | 5.8 Average Rate of Change | Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. | ### Algebra 1 Unit 6: Working with Nonlinear Functions | | Learning Targets | |---|---| | Lesson | Learning Targets | | 6.1 Nonlinear Growth | Describe the growth of functions presented in tables, graphs, and verbal descriptions. Determine if a function exhibits linear or nonlinear growth by identifying whether there is a constant rate of change. | | 6.2 Step Functions | Interpret and graph scenarios that can be modeled with step functions. Interpret and graph scenarios that can be modeled with step functions. | | 6.3 Absolute Value Functions | Interpret and graph scenarios that can be modeled with absolute value functions. Connect the meaning of absolute value functions as describing distances between points to the shape and symmetry of their graphs. | | 6.4 Solving an Absolute Value
Function | Understand that solving equations of the form f(x) = k means finding the x-values of the intersections of y = f(x) and y = k. Solve equations with absolute value functions graphically. Solve equations with absolute value functions algebraically. | | 6.5 Exponent Rules | Use exponent properties to simplify expressions. Justify properties related to exponents. Determine if two expressions are equivalent using exponent properties. | | 6.6 Power Functions | Evaluate power functions. Compare the growth rates of power functions as it relates to the degree of the function. | | 6.7 Square Root and Root
Functions | Understand square roots, cube roots, and nth roots as operators that undo squares, cubes, and nth powers, respectively. Graph the parent function y = √x and describe its key features including domain, range, and intercepts. | | 6.8 Radicals and Rational Exponents | Understand that the properties of exponents extend to rational exponents and use these properties to identify equivalent expressions. Know that a radical is in simplest form if the radicand has no perfect square factors; simply radicals. Explain why expressions involving radicals can be rewritten with rational exponents and vice versa. | |-------------------------------------|---| | 6.9 Solving Equations | Solve equations algebraically using inverse operations. Construct a viable argument to justify a solution method. | ### Algebra 1 Unit 7: Quadratic Functions | | Unit 7: Quadratic Functions | |--------------------------------------|--| | Lesson | Learning Targets | | 7.1 Quadratic Growth | Understand that quadratic functions have a linear rate of change, or a constant second difference over equal intervals of the domain. Identify patterns or scenarios that can be represented by quadratic functions. Distinguish quadratic growth from linear and exponential growth. | | 7.2 The Parent Function | Understand that quadratic functions are represented by parabolas, which have an axis of symmetry through their vertex. Graph the parent function f(x) = x² and identify its domain, range, vertex, and intercepts. Describe its rate of change. | | 7.3 Transforming Quadratic Functions | Identify the effect of specific transformations (vertical shifts, horizontal shifts, vertical stretches) on the graph of the parent function f(x) = x². Connect numerical changes in outputs of transformed functions with graphs of transformed functions (e.g. all the outputs are 5 greater than the original function corresponds with a graph that has been vertically shifted up 5 units). Graph quadratic functions in vertex form. | | 7.4 Features of Quadratic Functions | Identify a relationship between the vertex and the x-intercepts of a quadratic function using symmetry. Use graphs, tables, and equations to identify the vertex, intercepts, and other values of a quadratic function. Use graphs, tables, and equations to identify the vertex, intercepts, and other values of a quadratic function. | | 7.5 Forms of Quadratic Functions | Understand that each form of a quadratic equation reveals different features of the graph, such as the x-and y-intercepts, the vertex, and the transformations that occurred from the parent function. Calculate the vertex of a quadratic function given its equation in standard form using the formula x = -b/2a. | | 7.6 Writing Quadratics in Factored Form | Demonstrate that two different forms of quadratic equations are equivalent. Factor quadratic functions in standard form when a=1 Factor quadratic functions with a GCF | |--|---| | 7.7 Solving Quadratics using the Zero Product Property | Understand that the x-intercepts of a parabolic function y=f(x) are the solutions to the equation f(x) = 0. Understand why a quadratic in factored form is equal to zero when one of its factors is zero. Identify x-intercepts/zeros of a quadratic function from standard form using factoring. | | 7.8 Solving Quadratics using Symmetry | Given a quadratic in standard form, find its zeros
by identifying the axis of symmetry and
calculating the horizontal distance between the
vertex and an x-intercept. | | 7.9 Quadratic Models | Generate quadratic functions as a product of linear equations. Interpret zeros and relative extrema of a quadratic in a real-world context. | ### Algebra 1 Unit 8: Exponential Functions | | Learning Torquete | |--|---| | Lesson | Learning Targets | | 8.1 Geometric Sequences: From Recursive to Explicit | Understand that patterns representing repeated multiplication can be described with exponents. Write explicit rules for geometric sequences using the initial term and the common ratio. | | 8.2 Exponential Functions | Extend geometric sequences to exponential functions, whose domains are the real numbers. Understand that in the function y = ab^x, a represents the initial term, and b represents the growth or decay factor. Evaluate exponential functions for positive, negative, and non-integer values of x. | | 8.3 Graphs of Parent Exponential Functions | Graph equations of the form y = b^x and identify the domain, range, y-intercept, and asymptote. Explain why all functions of the form y = b^x pass through (0,1) and (1,b). Understand that if b > 1, the function is increasing, the slope of the graph is positive, and the function represents exponential growth, and if 0 < b < 1, the function is decreasing, the slope of the graph is negative, and the function represents exponential decay. | | 8.4 Transformations of Exponential Functions | Graph equations of the form y = ab^x and y = b^x + k and identify the domain, range, y-intercept, and asymptote. Describe how the parameters in y = ab^x + k affect the y-intercept of the graph, the steepness of the graph, and the horizontal asymptote. | | 8.5 Working with Exponential Functions | Given values of a geometric sequence or exponential function, solve for the common ratio. Find missing values of a geometric sequence or exponential function. Construct exponential functions given a description, table, or graph. | | 8.6 Interpreting Models for Exponential Growth and Decay | Interpret the parameters of an exponential function in terms of its context. Use exponential models to make predictions. Write exponential models for situations with a growth rate or decay rate given as a percent. | | 8.7 Constructing Exponential Models | Understand that choices, assumptions, and approximations are part of the modeling process. Determine if a linear or exponential model better fits a data set. Construct a rough exponential model based on data. | |--------------------------------------|--| | 8.8 Rational Exponents in
Context | Evaluate exponential functions at values representing fractions of the growth period. Rewrite annual growth rates as monthly, weekly, or daily growth rates, and vice versa. |