## Calc Medic Ultimate Justifications Guide

| To justify that                            | State/show that |
|--------------------------------------------|-----------------|
| f is continuous at $x = a$                 |                 |
| f is differentiable at $x = a$             |                 |
| f is increasing on the interval $(a, b)$   |                 |
| f is decreasing on the interval $(a, b)$   |                 |
| f has a critical point at $x = a$          |                 |
| f has a relative minimum at $x = a$        |                 |
| f has a relative maximum at $x = a$        |                 |
| f is concave up on the interval $(a, b)$   |                 |
| f is concave down on the interval $(a, b)$ |                 |
| f has an inflection point at $x = a$       |                 |
| f has an absolute minimum at $x = a$       |                 |
| f has an absolute maximum at $x = a$       |                 |



| f(x) = k for some x on the interval [a,b]                                                                                                  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------|--|
| f'(x) = k for some x on the interval $(a, b)$                                                                                              |  |
| A particle is at rest at $t = k$                                                                                                           |  |
| A particle changes direction at $t = k$                                                                                                    |  |
| A particle is speeding up/slowing down at $t = k$                                                                                          |  |
| A particle is moving away from/towards the origin at $t = k$ .                                                                             |  |
| A tangent line approximation for $f(a)$ is an<br>underestimate/overestimate for the true<br>value of $f(a)$                                |  |
| A right Riemann sum is an<br>underapproximation/overapproximation for<br>the area under a curve $f$ between $x = a$<br>and $x = b$         |  |
| A left Riemann sum is an<br>underapproximation/overapproximation for<br>the area under a curve $f$ between $x = a$<br>and $x = b$          |  |
| A trapezoidal approximation is an<br>underapproximation/overapproximation for<br>the area under a curve $f$ between $x = a$<br>and $x = b$ |  |

