

$$\frac{\frac{d}{dx}\left(\frac{dy}{dx}\right)}{\frac{dx}{dt}} \qquad \qquad \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$$
$$a(t) = \langle x''(t), y''(t) \rangle \qquad \qquad v(t) = \langle x'(t), y'(t) \rangle$$
$$x(b) = x(a) + \int_{a}^{b} x'(t) dt \qquad \qquad \sqrt{(x'(t))^{2} + (y'(t))^{2}}$$
$$\int_{a}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2}} dt \qquad \qquad y(d) = y(c) + \int_{c}^{d} y'(t) dt$$
$$\int_{a}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2}} dt \qquad \qquad \int_{a}^{b} \sqrt{1 + (f'(x))^{2}} dx$$

$A = \frac{1}{2} \int_{\theta_1}^{\theta_2} (r(\theta))^2 d\theta$	$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}$ (Use $x = r \cos \theta$ and $y = r \sin \theta$ to convert first)
$S = \frac{1}{1 - r}$	$A = \frac{1}{2} \int_{\theta_1}^{\theta_2} (r_{outer}(\theta))^2 - (r_{inner}(\theta))^2 d\theta$
Converges if $p > 1$ Diverges if $p \le 1$ P-series	Diverges Harmonic series
If $\lim_{n \to \infty} a_n \neq 0$, the series diverges	Converges if r < 1 Geometric series
If $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} < 1$, the series converges	If $\lim_{n \to \infty} \frac{a_n}{b_n}$ is a finite, positive value, both series converge or both diverge

Both
$$\sum_{n=1}^{\infty} |a_n|$$
 and $\sum_{n=1}^{\infty} a_n$
convergeIf the series is alternating
and $\lim_{n \to \infty} a_n = 0$, the series
converges $\frac{f^n(a)}{n!} (x-a)^n$ Either $\sum_{n=1}^{\infty} |a_n|$ or $\sum_{n=1}^{\infty} a_n$
converges $1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + \frac{(-1)^n x^{2n}}{(2n)!}$ $x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots + \frac{(-1)^n x^{2n+1}}{(2n+1)!}$ $uv - \int v \, du$ $1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!}$ Integration by Parts $\int_a^{\infty} f(x) dx = \lim_{b \to \infty} \int_a^b f(x) dx$

Partial Fractions	Improper Integral
Improper Integral	Integration by Parts
U-Substitution	Integration by Parts